Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Capranico is active.

Publication


Featured researches published by Giovanni Capranico.


Nucleic Acids Research | 2013

Antisense transcripts enhanced by camptothecin at divergent CpG-island promoters associated with bursts of topoisomerase I-DNA cleavage complex and R-loop formation

Jessica Marinello; Giovanni Chillemi; Susana Bueno; Stefano G. Manzo; Giovanni Capranico

DNA Topoisomerase I (Top1) is required to relax DNA supercoils generated by RNA polymerases (RNAPs). Top1 is inhibited with high specificity by camptothecin (CPT), an effective anticancer agent, and by oxidative base damage and ribonucleotides in DNA strands, resulting into Top1-DNA cleavage complexes (Top1ccs). To understand how Top1ccs affect genome stability, we have investigated the global transcriptional response to CPT-induced Top1ccs. Top1ccs trigger an accumulation of antisense RNAPII transcripts specifically at active divergent CpG-island promoters in a replication-independent and Top1-dependent manner. As CPT increases antisense transcript levels in the presence of 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole, a transcription inhibitor, Top1ccs likely impair antisense RNA degradation. Time-course data showed a burst of Top1ccs increased by CPT at promoter sites and along transcribed regions, causing a transient block of RNAPII at the promoter. Moreover, cell immunofluorescence analyses showed that Top1ccs induce a transient increase of R-loops specifically at highly transcribed regions such as nucleoli in a Top1-dependent manner. Thus, a specific and highly dynamic transcriptional response to Top1ccs occurs at divergent active CpG-island promoters, which may include a transient stabilization of R-loops. The results clarify molecular features of a response pathway leading to transcription-dependent genome instability and altered transcription regulation.


Molecular Cancer Therapeutics | 2014

The Natural Inhibitor of DNA Topoisomerase I, Camptothecin, Modulates HIF-1α Activity by Changing miR Expression Patterns in Human Cancer Cells

Davide Bertozzi; Jessica Marinello; Stefano G. Manzo; Francesca Fornari; Laura Gramantieri; Giovanni Capranico

DNA topoisomerase I (Top1) inhibition by camptothecin derivatives can impair the hypoxia-induced cell transcriptional response. In the present work, we determined molecular aspects of the mechanism of camptothecins effects on hypoxia-inducible factor-1α (HIF-1α) activity in human cancer cells. In particular, we provide evidence that low concentrations of camptothecin, without interfering with HIF-1α mRNA levels, can reduce HIF-1α protein expression and activity. As luciferase assays demonstrated the involvement of the HIF-1α mRNA 3′ untranslated region in camptothecin-induced impairment of HIF-1α protein regulation, we performed microarray analysis to identify camptothecin-induced modification of microRNAs (miRNA) targeting HIF-1α mRNA under hypoxic-mimetic conditions. The selected miRNAs were then further analyzed, demonstrating a role for miR-17-5p and miR-155 in HIF-1α protein expression after camptothecin treatments. The present findings establish miRNAs as key factors in a molecular pathway connecting Top1 inhibition and human HIF-1α protein regulation and activity, widening the biologic and molecular activity of camptothecin derivatives and the perspective for novel clinical interventions. Mol Cancer Ther; 13(1); 239–48. ©2013 AACR.


Nucleic Acids Research | 2016

DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions

Agnese Cristini; Joon-Hyung Park; Giovanni Capranico; Gaëlle Legube; Gilles Favre; Olivier Sordet

Although defective repair of DNA double-strand breaks (DSBs) leads to neurodegenerative diseases, the processes underlying their production and signaling in non-replicating cells are largely unknown. Stabilized topoisomerase I cleavage complexes (Top1cc) by natural compounds or common DNA alterations are transcription-blocking lesions whose repair depends primarily on Top1 proteolysis and excision by tyrosyl–DNA phosphodiesterase-1 (TDP1). We previously reported that stabilized Top1cc produce transcription-dependent DSBs that activate ATM in neurons. Here, we use camptothecin (CPT)-treated serum-starved quiescent cells to induce transcription-blocking Top1cc and show that those DSBs are generated during Top1cc repair from Top1 peptide-linked DNA single-strand breaks generated after Top1 proteolysis and before excision by TDP1. Following DSB induction, ATM activates DNA-PK whose inhibition suppresses H2AX and H2A ubiquitination and the later assembly of activated ATM into nuclear foci. Inhibition of DNA-PK also reduces Top1 ubiquitination and proteolysis as well as resumption of RNA synthesis suggesting that DSB signaling further enhances Top1cc repair. Finally, we show that co-transcriptional DSBs kill quiescent cells. Together, these new findings reveal that DSB production and signaling by transcription-blocking Top1 lesions impact on non-replicating cell fate and provide insights on the molecular pathogenesis of neurodegenerative diseases such as SCAN1 and AT syndromes, which are caused by TDP1 and ATM deficiency, respectively.


Journal of Medicinal Chemistry | 2016

Toward the Development of Specific G-Quadruplex Binders: Synthesis, Biophysical, and Biological Studies of New Hydrazone Derivatives

Jussara Amato; Rita Morigi; Bruno Pagano; Alessia Pagano; Stephan A. Ohnmacht; Alessio De Magis; Yee-Peng Tiang; Giovanni Capranico; Alessandra Locatelli; Alessandra Graziadio; Alberto Leoni; Mirella Rambaldi; Ettore Novellino; Stephen Neidle; Antonio Randazzo

G-Quadruplex-binding compounds are currently perceived as possible anticancer therapeutics. Here, starting from a promising lead, a small series of novel hydrazone-based compounds were synthesized and evaluated as G-quadruplex binders. The in vitro G-quadruplex-binding properties of the synthesized compounds were investigated employing both human telomeric and oncogene promoter G-quadruplexes with different folding topologies as targets. The present investigation led to the identification of potent G-quadruplex stabilizers with high selectivity over duplex DNA and preference for one G-quadruplex topology over others. Among them, selected derivatives have been shown to trap G-quadruplex structures in the nucleus of cancer cells. Interestingly, this behavior correlates with efficient cytotoxic activity in human osteosarcoma and colon carcinoma cells.


PLOS ONE | 2016

Dynamic Effects of Topoisomerase I Inhibition on R-Loops and Short Transcripts at Active Promoters

Jessica Marinello; Stefania Bertoncini; Iris Aloisi; Agnese Cristini; Guidantonio Malagoli Tagliazucchi; Mattia Forcato; Olivier Sordet; Giovanni Capranico

Topoisomerase I-DNA-cleavage complexes (Top1cc) stabilized by camptothecin (CPT) have specific effects at transcriptional levels. We recently reported that Top1cc increase antisense transcript (aRNAs) levels at divergent CpG-island promoters and, transiently, DNA/RNA hybrids (R-loop) in nuclear and mitochondrial genomes of colon cancer HCT116 cells. However, the relationship between R-loops and aRNAs was not established. Here, we show that aRNAs can form R-loops in N-TERA-2 cells under physiological conditions, and that promoter-associated R-loops are somewhat increased and extended in length immediately upon cell exposure to CPT. In contrast, persistent Top1ccs reduce the majority of R-loops suggesting that CPT-accumulated aRNAs are not commonly involved in R-loops. The enhancement of aRNAs by Top1ccs is present both in human colon cancer HCT116 cells and WI38 fibroblasts suggesting a common response of cancer and normal cells. Although Top1ccs lead to DSB and DDR kinases activation, we do not detect a dependence of aRNA accumulation on ATM or DNA-PK activation. However, we showed that the cell response to persistent Top1ccs can involve an impairment of aRNA turnover rather than a higher synthesis rate. Finally, a genome-wide analysis shows that persistent Top1ccs also determine an accumulation of sense transcripts at 5’-end gene regions suggesting an increased occurrence of truncated transcripts. Taken together, the results indicate that Top1 may regulate transcription initiation by modulating RNA polymerase-generated negative supercoils, which can in turn favor R-loop formation at promoters, and that transcript accumulation at TSS is a response to persistent transcriptional stress by Top1 poisoning.


Journal of Medicinal Chemistry | 2017

Type I DNA Topoisomerases

Giovanni Capranico; Jessica Marinello; Giovanni Chillemi

DNA topoisomerases constitute a large family of enzymes that are essential for all domains of life. Although they share general reaction chemistry and the capacity to govern DNA topology and resolve strand entanglements during fundamental molecular processes, they are characterized by differences in their structural organization, modes of enzymatic catalysis, and biological functions. Moreover, hundreds of compounds interfere with bacterial and/or eukaryotic enzymes, some of which are effective drugs for the treatment of infectious diseases and cancers. Research over the past decade has focused on the biological functions of DNA topoisomerases, and several findings have revealed unexpected roles of type I DNA topoisomerases, a subclass of these enzymes, in regulating gene expression and DNA and chromatin conformations. These new findings highlight that type I topoisomerases are still interesting targets for drug discovery for the treatment of several human diseases, including multidrug-resistant infections and genetic disorders.


PLOS ONE | 2014

Novel DNA Topoisomerase IIα Inhibitors from Combined Ligand- and Structure-Based Virtual Screening

Malgorzata N. Drwal; Jessica Marinello; Stefano G. Manzo; Laurence P. G. Wakelin; Giovanni Capranico; Renate Griffith

DNA topoisomerases are enzymes responsible for the relaxation of DNA torsional strain, as well as for the untangling of DNA duplexes after replication, and are important cancer drug targets. One class of topoisomerase inhibitors, “poisons”, binds to the transient enzyme-DNA complex which occurs during the mechanism of action, and inhibits the religation of DNA. This ultimately leads to the accumulation of DNA double strand breaks and cell death. Different types of topoisomerases occur in human cells and several poisons of topoisomerase I and II are widely used clinically. However, their use is compromised by a variety of side effects. Recent studies confirm that the inhibition of the α-isoform of topoisomerase II is responsible for the cytotoxic effect, whereas the inhibition of the β-isoform leads to development of adverse drug reactions. Thus, the discovery of agents selective for topoisomerase IIα is an important strategy for the development of topoisomerase II poisons with improved clinical profiles. Here, we present a computer-aided drug design study leading to the identification of structurally novel topoisomerase IIα poisons. The study combines ligand- and structure-based drug design methods including pharmacophore models, homology modelling, docking, and virtual screening of the National Cancer Institute compound database. From the 8 compounds identified from the computational work, 6 were tested for their capacity to poison topoisomerase II in vitro: 4 showed selective inhibitory activity for the α- over the β-isoform and 3 of these exhibited cytotoxic activity. Thus, our study confirms the applicability of computer-aided methods for the discovery of novel topoisomerase II poisons, and presents compounds which could be investigated further as selective topoisomerase IIα inhibitors.


Journal of Medicinal Chemistry | 2017

RNA G-Quadruplexes in Kirsten Ras (KRAS) Oncogene as Targets for Small Molecules Inhibiting Translation

Giulia Miglietta; Susanna Cogoi; Jessica Marinello; Giovanni Capranico; Alexander S. Tikhomirov; Andrey E. Shchekotikhin; Luigi E. Xodo

The human KRAS transcript contains a G-rich 5-UTR sequence (77% GC) harboring several G4 motifs capable to form stable RNA G-quadruplex (RG4) structures that can serve as targets for small molecules. A biotin-streptavidin pull-down assay showed that 4,11-bis(2-aminoethylamino)anthra[2,3-b]furan-5,10-dione (2a) binds to RG4s in the KRAS transcript under low-abundance cellular conditions. Dual-luciferase assays demonstrated that 2a and its analogue 4,11-bis(2-aminoethylamino)anthra[2,3-b]thiophene-5,10-dione (2b) repress translation in a dose-dependent manner. The effect of the G4-ligands on Panc-1 cancer cells has also been examined. Both 2a and 2b efficiently penetrate the cells, suppressing protein p21KRAS to <10% of the control. The KRAS down-regulation induces apoptosis together with a dramatic reduction of cell growth and colony formation. In summary, we report a strategy to suppress the KRAS oncogene in pancreatic cancer cells by means of small molecules binding to RG4s in the 5-UTR of mRNA.


Biochimica et Biophysica Acta | 2017

Discovery of the first dual G-triplex/G-quadruplex stabilizing compound: a new opportunity in the targeting of G-rich DNA structures?

Jussara Amato; Alessia Pagano; Sandro Cosconati; Giorgio Amendola; Iolanda Fotticchia; Nunzia Iaccarino; Jessica Marinello; Alessio De Magis; Giovanni Capranico; Ettore Novellino; Bruno Pagano; Antonio Randazzo

BACKGROUNDnGuanine-rich DNA motifs can form non-canonical structures known as G-quadruplexes, whose role in tumorigenic processes makes them attractive drug-target candidates for cancer therapy. Recent studies revealed that the folding and unfolding pathways of G-quadruplexes proceed through a quite stable intermediate named G-triplex.nnnMETHODSnVirtual screening was employed to identify a small set of putative G-triplex ligands. The G-triplex stabilizing properties of these compounds were analyzed by CD melting assay. DSC, non-denaturing gel electrophoresis, NMR and molecular modeling studies were performed to investigate the interaction between the selected compound 1 and G-rich DNA structures. Cytotoxic activity of 1 was evaluated by MTT cell proliferation assay.nnnRESULTSnThe experiments led to the identification of a promising hit that was shown to bind preferentially to G-triplex and parallel-stranded G-quadruplexes over duplex and antiparallel G-quadruplexes. Molecular modeling results suggested a partial end-stacking of 1 to the external G-triad/G-tetrads as a binding mode. Biological assays showed that 1 is endowed with cytotoxic effect on human osteosarcoma cells.nnnCONCLUSIONSnA tandem application of virtual screening along with the experimental investigation was employed to discover a G-triplex-targeting ligand. Experiments revealed that the selected compound actually acts as a dual G-triplex/G-quadruplex stabilizer, thus stimulating further studies aimed at its optimization.nnnGENERAL SIGNIFICANCEnThe discovery of molecules able to bind and stabilize G-triplex structures is highly appealing, but their transient state makes challenging their recognition. These findings suggest that the identification of ligands with dual G-triplex/G-quadruplex stabilizing properties may represent a new route for the design of anticancer agents targeting the G-rich DNA structures. This article is part of a Special Issue entitled G-quadruplex Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Archiv Der Pharmazie | 2014

Novel ametantrone-amsacrine related hybrids as topoisomerase IIβ poisons and cytotoxic agents.

Giuseppe Zagotto; Alessandra Gianoncelli; Claudia Sissi; Cristina Marzano; Valentina Gandin; Riccardo Pasquale; Giovanni Capranico; Giovanni Ribaudo; Manlio Palumbo

The precise definition of the structural requirements for effective topoisomerase II poisoning by drug molecules is still an elusive issue. In the attempt to better define a pharmacophoric pattern, we prepared several conjugates combining the chemical features of two well‐known topoisomerase II poisons, amsacrine and ametantrone. Indeed, an appropriate fusion geometry, which entails the anthracenedione moiety of ametantrone appropriately connected to the methanesulfonamidoaniline side chain of amsacrine, elicits DNA‐intercalating properties, the capacity to inhibit the human topoisomerase IIβ isoform, and cytotoxic activity resembling that of the parent compounds. In addition, the properties of the lateral groups linked to the anthracenedione group play an important role in modulating DNA binding and cell cytotoxicity. Among the compounds tested, 10, 11, and 19 appear to be promising for further development.

Collaboration


Dive into the Giovanni Capranico's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessia Pagano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Randazzo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Bruno Pagano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Ettore Novellino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giovanni Chillemi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge