Giovanni D'Orazio
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giovanni D'Orazio.
Journal of Chromatography A | 2009
Katia Buonasera; Giovanni D'Orazio; Salvatore Fanali; Paola Dugo; Luigi Mondello
In the present research, the separation of a series of organophosphorus pesticides (fensulfothion, fenamiphos, profenofos, fonofos, isofenphos, dialifos, sulprofos and prothiofos), by using nano-liquid chromatography (nano-LC) with UV detection is described. Three 100 microm ID capillary columns, packed with different silica-based stationary phases (CN, C(18), and phenyl), were investigated. Among these, the phenyl column offered the best results in terms of chromatographic performance, and was selected for pesticide analyses. Parameters, such as sample dilution solvent, injection volume, mobile phase composition and flow rate, were optimized in order to define the ideal experimental conditions. With the aim of improving sensitivity, on-column focusing of large injection volumes was applied: a sensitivity increase of circa 100-fold was attained, with limits of detection (LODs) and quantification (LOQs) within the 4.4-37.5 and 14.5-125.0 ng/mL ranges, respectively. The method was validated, with satisfactory results, through the measurement of the following parameters: limits of detection and quantification, precision, linearity and recovery. Finally, five different baby foods, previously fortified with a solution of the eight aforementioned pesticides, and then subjected to liquid-liquid extraction and solid-phase extraction clean-up, were analyzed.
Journal of Chromatography B | 2008
Salvatore Fanali; Giovanni D'Orazio; Ketevan Lomsadze; Bezhan Chankvetadze
Cellulose tris(3-chloro-4-methylphenylcarbamate) was coated onto native and aminopropylsilanized silica in order to prepare chiral stationary phases (CSPs) for enantioseparations using nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC). The effect of the chiral selector loading onto silica, mobile phase composition and pH, as well as separation variables on separation of enantiomers was studied. It was found that CSPs based on cellulose tris(3-chloro-4-methylphenylcarbamate) can be used for preparation of very stable capillary columns useful for enantioseparations in nano-LC and CEC in combination with polar organic mobile phases.
Journal of Separation Science | 2011
Chiara Fanali; Laura Dugo; Giovanni D'Orazio; Melania Lirangi; Marina Dachà; Paola Dugo; Luigi Mondello
Nano-LC and conventional HPLC techniques were applied for the analysis of anthocyanins present in commercial fruit juices using a capillary column of 100 μm id and a 2.1 mm id narrow-bore C(18) column. Analytes were detected by UV-Vis at 518 nm and ESI-ion trap MS with HPLC and nano-LC, respectively. Commercial blueberry juice (14 anthocyanins detected) was used to optimize chromatographic separation of analytes and other analysis parameters. Qualitative identification of anthocyanins was performed by comparing the recorded mass spectral data with those of published papers. The use of the same mobile phase composition in both techniques revealed that the miniaturized method exhibited shorter analysis time and higher sensitivity than narrow-bore chromatography. Good intra-day and day-to-day precision of retention time was obtained in both methods with values of RSD less than 3.4 and 0.8% for nano-LC and HPLC, respectively. Quantitative analysis was performed by external standard curve calibration of cyanidin-3-O-glucoside standard. Calibration curves were linear in the concentration ranges studied, 0.1-50 and 6-50 μg/mL for HPLC-UV/Vis and nano-LC-MS, respectively. LOD and LOQ values were good for both methods. In addition to commercial blueberry juice, qualitative and quantitative analysis of other juices (e.g. raspberry, sweet cherry and pomegranate) was performed. The optimized nano-LC-MS method allowed an easy and selective identification and quantification of anthocyanins in commercial fruit juices; it offered good results, shorter analysis time and reduced mobile phase volume with respect to narrow-bore HPLC.
Journal of Pharmaceutical and Biomedical Analysis | 2004
Salvatore Fanali; Emanuela Camera; Bezhan Chankvetadze; Giovanni D'Orazio; M.G. Quaglia
Nanoliquid chromatography (nano-LC) was used for the separation of tocopherols (delta-, gamma-, alpha-TOH), alpha-tocopherol acetate (alpha-TOH-Ac) and an antioxidant compound, namely butylated hydroxytoluene (BHT) used to prevent TOHs autoxidation. The separation was carried out in a fused silica capillary of 100 microm I.D. and 375 microm O.D. packed in our laboratory with RP18 silica stationary phase of either 5- or 3-microm diameter (23-cm long). The mobile phase was composed by mixtures of methanol (MeOH), acetonitrile (MeCN) and water. Typical analyses time for the separation of all the five components of the mixture were 6-9 min depending on the composition of the mobile phase. Efficiency and resolution were strongly influenced by the particle diameter and the highest Rs and N/m values were observed using 3-microm RP18 particles. Experiments performed with capillaries packed with 3-microm RP18 particles provided good limit of detection (LOD) and limit of quantification (LOQ) (for delta-, gamma-TOH, alpha-TOH-Ac were 4 and 8 microg/ml, while for alpha-TOH were 6 and 10 microg/ml, respectively). The optimized method was applied to extracts of serum and pharmaceutical preparation containing alpha-TOH and alpha-TOH-Ac.
Journal of Pharmaceutical and Biomedical Analysis | 2010
Kahina Si-Ahmed; Fairouz Tazerouti; Ahmed Yacine Badjah-Hadj-Ahmed; Zeineb Aturki; Giovanni D'Orazio; Anna Rocco; Salvatore Fanali
Hesperetin (HT) is a flavanone abundantly found in citrus fruits. It has been reported that HT possesses significant antioxidant, anticancer, anti-inflammatory and analgesic activities. This explains the necessity of developing new methods more powerful and sensitive for analyzing HT in biological fluids. Taking into account the chiral nature of HT, the study of the stereospecific kinetics of in vitro and in vivo metabolism and tissue distribution could be a useful tool for further understanding stereoselective biotransformations in human body. A simple nano-liquid chromatographic method for the determination of the enantiomeric composition of hesperetin in human urine was developed. Chiral separation was achieved using a 100 microm I.D. capillary, packed with phenyl-carbamate-propyl-beta-cyclodextrin stationary phase, employing a mobile phase composed by a mixture of triethylammonium acetate buffer (1%, v/v, pH 4.5) and water/methanol (30:70, v/v) at room temperature. The detection was done by using on-column UV detector at 205 nm. Calibration curves were linear in the studied concentration range from 0.25 to 25 microg/mL (r(2)>0.999). Precision assay was <4.5% and was within 3% at the limit of quantification (0.5 microg/mL). The recovery of 7-ethoxycoumarin (IS), R- and S-hesperetin was greater than 82.48%, utilizing a liquid-liquid extraction procedure. The developed method was successfully applied to the determination of hesperetin enantiomers in urine samples obtained from a male volunteer, after the ingestion of 1L of a commercial blood orange juice.
Electrophoresis | 2008
Zeineb Aturki; Salvatore Fanali; Giovanni D'Orazio; Anna Rocco; Chiara Rosati
In this work, the simultaneous separation of ten phenolic compounds (protocatechuic, p‐coumaric, o‐coumaric, vanillic, ferulic, caffeic, syringic acids, hydroxytyrosol, tyrosol and oleuropein) in extra virgin olive oils (EVOOs) by isocratic RP CEC is proposed. A CEC method was optimized in order to completely resolve all the analyzed compounds by studying several experimental parameters. The influence of the stationary phase type (C18 and C8 modified silica gel), buffer concentration and pH as well as the organic modifier content of the mobile phase on retention factors, selectivity and efficiency were evaluated in details. A capillary column packed with Cogent® bidentate C18 particles for 23 cm and a mobile phase composed by 100 mM ammonium formate buffer pH 3/H2O/ACN (5:65:30 v/v/v) allowed the baseline resolution of the compounds under study in less than 35 min setting the applied voltage and temperature at 22 kV and 20°C, respectively. A study, evaluating the intra‐ and interday precision as well as LOD and LOQ and method linearity was developed in accordance with the analytical procedures for method validation. LODs were in the range of 0.015–2.5 μg/mL, while calibration curves showed a good linearity (r2 >0.997). The CEC method was applied to the separation and determination of these compounds in EVOO samples after a suitable liquid–liquid extraction procedure. The mean recovery values of the studied compounds ranged between 87 and 99%.
Electrophoresis | 2010
Zeineb Aturki; Giovanni D'Orazio; Anna Rocco; Federica Bortolotti; Rossella Gottardo; Franco Tagliaro; Salvatore Fanali
This article describes a method for the separation and determination of nine drugs of abuse in human urine, including amphetamines, cocaine, codeine, heroin and morphine. This method was based on SPE on a strong cation exchange cartridge followed by CEC‐MS. The CEC experiments were performed in fused silica capillaries (100 μm×30 cm) packed with a 3 μm cyano derivatized silica stationary phase. A laboratory‐made liquid junction interface was used for CEC‐MS coupling. The outlet capillary column was connected with an emitter tip that was positioned in front of the MS orifice. A stable electrospray was produced at nanoliter per minute flow rates applying a hydrostatic pressure (few kPa) to the interface. The coupling of packed CEC columns with mass spectrometer as detector, using a liquid junction interface, provided several advantages such as better sensitivity, low dead volume and independent control of the conditions used for CEC separation and ESI analysis. For this purpose, preliminary experiments were carried out in CEC‐UV to optimize the proper mobile phase for CEC analysis. Good separation efficiency was achieved for almost all compounds, using a mixture containing ACN and 25 mM ammonium formate buffer at pH 3 (30:70, v/v), as mobile phase and applying a voltage of 12 kV. ESI ion‐trap MS detection was performed in the positive ionization mode. A spray liquid, composed by methanol–water (80:20, v/v) and 1% formic acid, was delivered at a nano‐flow rate of ∼200 nL/min. Under optimized CEC‐ESI‐MS conditions, separation of the investigated drugs was performed within 13 min. CEC‐MS and CEC‐MS2 spectra were obtained by providing the unambiguous confirmation of these drugs in urine samples. Method precision was determined with RSDs values ≤3.3% for retention times and ≤16.3% for peak areas in both intra‐day and day‐to‐day experiments. LODs were established between 0.78 and 3.12 ng/mL for all compounds. Linearity was satisfactory in the concentration range of interest for all compounds (r2≥0.995). The developed CEC‐MS method was then applied to the analysis of drugs of abuse in spiked urine samples, obtaining recovery data in the range 80–95%.
Electrophoresis | 2011
Zeineb Aturki; Giovanni D'Orazio; Anna Rocco; Salvatore Fanali
β‐Blocker drugs or β‐adrenergic blocking agents are an important class of drugs, prescribed with great frequency. They are used for various diseases, particularly for the treatment of cardiac arrhythmias, cardioprotection after myocardial infarction (heart attack), and hypertension. Almost all β‐blocker drugs possess one or more stereogenic centers; however; only some of them are administered as single enantiomers. Since both enantiomers can differ in their pharmacological and toxicological properties, enantioselective analytical methods are required not only for pharmacodynamic and pharmacokinetic studies but also for quality control of pharmaceutical preparations with the determination of enantiomeric purity. In addition to the chromatographic tools, in recent years, capillary electromigration techniques (CE, CEC, and MEKC) have been widely used for enantioselective purposes employing a variety of chiral selectors, e.g. CDs, polysaccharides, macrocyclic antibiotics, proteins, chiral ion‐paring agents, etc. The high separation efficiency, rapid analysi,s and low consumption of reagents of electromigration methods make them a very attractive alternative to the conventional chromatographic methods. In this review, the development and applications of electrodriven methods for the enantioseparation of β‐blocker drugs are reported. The papers concerning this topic, published from January 2000 until December 2010, are summarised here. Particular attention is given to the coupling of chiral CE and CEC methods to MS, as this detector provides high sensitivity and selectivity.
Journal of Separation Science | 2010
Salvatore Fanali; Zeineb Aturki; Giovanni D'Orazio; Anna Rocco; Anna Ferranti; Laura Mercolini; Maria Augusta Raggi
This article proposes a chromatographic method for the analysis of extracts of Aloe plants. The method was developed with a laboratory assembled nano-LC system coupled with a UV detector, followed by an IT-mass spectrometer. With a step gradient mode of ACN/H(2)O mixtures and employing a capillary column packed with C(18) (100 μm id), a complete separation of the following anthrones was achieved: aloin (in its two isomeric forms A and B), 5-hydroxyaloin and 7-hydroxyaloin (in its two isomeric forms A and B). The optimized nano-LC-MS method was validated for the quantification of aloin, the main component of Aloe with known pharmacological activities. RSD values obtained for retention time and peak areas were 1.3 and 12.1%, respectively. LOD and LOQ values of 0.4 and 1.5 μg/mL were obtained for each aloin isomer. The method was applied to the analysis of Aloe vera and A. ferox extracts in order to acquire a fingerprint, characteristic for each plant. Several phenolic compounds were detected by UV and identified by MS. A. vera and A. ferox showed different profiles and it was possible to discriminate them. Several commercial formulations, declared to contain Aloe extracts, were analyzed. Comparing their chromatograms with those obtained from A. vera and A. ferox, it was possible to recognize the Aloe species and to determine aloin.
Journal of Chromatography A | 2010
Giovanni D'Orazio; Salvatore Fanali
Capillary electrochromatography (CEC) was coupled with mass spectrometry (MS) for the separation of some selected pesticides and drug enantiomers. CEC separations were carried out in fused silica capillaries packed with either 5microm RP(18) silica or 5microm silica modified vancomycin particles. The capillary column was connected with the MS utilizing a laboratory-made liquid-junction interface equipped with a 50microm I.D. capillary-tip positioned at a few mm from the orifice of the MS. The CEC-MS set-up was operated without external pressure assistance during the electrochromatographic run commonly used to avoid bubble formation. However a hydrostatic pressure of a few kPa was applied only to the liquid-junction interface to optimize the ion-spray due to the low I.D. of the capillary-tip. In order to optimize the CEC-MS method, several experimental parameters were studied, namely the inlet pressure, the hydrostatic pressure into the liquid-junction interface, the type of sheath-liquid and the mobile phase. The application of an inlet pressure influenced only analyte retention times that were shortened by increasing the pressure. On the contrary the hydrostatic pressure applied to the interface increased the flow rate into the tip also increasing the ion-signal recorded in the mass spectrometry. The ion-signal raised almost linearly by increasing the outlet pressure till 3.5kPa and then decreased. The separation of the selected pesticides was not influenced at all changing the hydrostatic pressure on the interface. Some basic enantiomeric compounds of pharmaceutical interest were successfully separated by CEC achieving good resolution. They were detected by MS with limit of detection in a range of 0.24-0.60microg/mL.