Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Delogu is active.

Publication


Featured researches published by Giovanni Delogu.


Infection and Immunity | 2001

Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells.

Michael J. Brennan; Giovanni Delogu; Yiping Chen; Stoyan Bardarov; Jordan Kriakov; Mohammad Alavi; William R. Jacobs

ABSTRACT The elucidation of the genomic sequence of Mycobacterium tuberculosis revealed the presence of a novel multigene family designated PE/PE_PGRS that encodes numerous, highly related proteins of unknown function. In this study, we demonstrate that a transposon insertion in a PE_PGRS gene (1818PE_PGRS) found inMycobacterium bovis BCG Pasteur, which is the BCG homologue of the M. tuberculosis H37Rv gene Rv1818c, introduces new phenotypic properties to this BCG strain. These properties include dispersed growth in liquid medium and reduced infection of macrophages. Complementation of the 1818PE_PGRS::Tn5367 mutant with the wild-type gene restores both aggregative growth (clumping) in liquid medium and reestablishes infectivity of macrophages to levels equivalent to those for the parent BCG strain. Western blot analysis using antisera raised against the 1818PE_PGRS protein shows that PE_PGRS proteins are found in cell lysates of BCG andM. tuberculosis H37Ra and in the cell wall fraction of M. tuberculosis H37Rv. Moreover, immunofluorescent labeling of mycobacteria indicates that certain PE_PGRS proteins are localized at the cell surface of BCG andM. tuberculosis. Together these results suggest that certain PE_PGRS proteins may be found at the surface of mycobacteria and influence both cell surface interactions among mycobacteria as well as the interactions of mycobacteria with macrophages.


Trends in Microbiology | 2002

The PE multigene family: a ‘molecular mantra’ for mycobacteria

Michael J. Brennan; Giovanni Delogu

The PE multigene family of Mycobacterium tuberculosis is remarkable in that it is composed of approximately 100 highly homologous genes that are found only in mycobacteria. Early evidence suggests that proteins encoded by certain members of this gene family could be present in the mycobacterial cell wall, impact antigen-presentation pathways and the ensuing host immune responses, and also provide a mechanism for generating antigenic diversity in mycobacteria.


Infection and Immunity | 2001

Comparative Immune Response to PE and PE_PGRS Antigens of Mycobacterium tuberculosis

Giovanni Delogu; Michael J. Brennan

ABSTRACT Sequencing of the entire genome of Mycobacterium tuberculosis identified a novel multigene family composed of two closely related subfamilies designated PE and PE_PGRS. The major difference between these two families is the presence of a domain containing numerous Gly-Ala repeats extending to the C terminus of the PE_PGRS genes. We have used a representative PE_PGRS gene fromM. tuberculosis, Rv1818c(1818PE_PGRS), and its amino-terminal PE region (1818PE), to investigate the immunological response to these proteins during experimental tuberculosis and following immunization with DNA constructs. During infection of mice with M. tuberculosis, a significant humoral immune response was observed against recombinant 1818PE_PGRS but not toward the 1818PE protein. Similarly, immunization with a 1818PE_PGRS DNA construct induced antibodies directed against 1818PE_PGRS but not against 1818PE proteins, and no humoral response was induced by 1818PE DNA. These results suggest that certain PE_PGRS genes are expressed during infection of the host with M. tuberculosis and that an antibody response is directed solely against the Gly-Ala-rich PGRS domain. Conversely, splenocytes from 1818PE-vaccinated mice but not mice immunized with 1818PE_PGRS secreted gamma interferon following in vitro restimulation and demonstrated protection in the mouse tuberculosis challenge model. These results suggest that the PE vaccine can elicit an effective cellular immune response and that immune recognition of the PE antigen is influenced by the Gly-Ala-rich PGRS domain.


Molecular Microbiology | 2004

Rv1818c‐encoded PE_PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure

Giovanni Delogu; Cinzia Pusceddu; Alessandra Bua; Giovanni Fadda; Michael J. Brennan; Stefania Anna Lucia Zanetti

Identification of the novel PE multigene family was an unexpected finding of the genomic sequencing of Mycobacterium tuberculosis. Presently, the biological role of the PE and PE_PGRS proteins encoded by this unique family of mycobacterial genes remains unknown. In this report, a representative PE_PGRS gene (Rv1818c/PE_PGRS33) was selected to investigate the role of these proteins. Cell fractionation studies and fluorescence analysis of recombinant strains of Mycobacterium smegmatis and M. tuberculosis expressing green fluorescent protein (GFP)‐tagged proteins indicated that the Rv1818c gene product localized in the mycobacterial cell wall, mostly at the bacterial cell poles, where it is exposed to the extracellular milieu. Further analysis of this PE_PGRS protein showed that the PE domain is necessary for subcellular localization. In addition, the PGRS domain, but not PE, affects bacterial shape and colony morphology when Rv1818c is overexpressed in M. smegmatis and M. tuberculosis. Taken together, the results indicate that PE_PGRS and PE proteins can be associated with the mycobacterial cell wall and influence cellular structure as well as the formation of mycobacterial colonies. Regulated expression of PE genes could have implications for the survival and pathogenesis of mycobacteria within the human host and in other environmental niches.


Infection and Immunity | 2002

DNA Vaccine Combinations Expressing Either Tissue Plasminogen Activator Signal Sequence Fusion Proteins or Ubiquitin-Conjugated Antigens Induce Sustained Protective Immunity in a Mouse Model of Pulmonary Tuberculosis

Giovanni Delogu; Amy Li; Charlene Repique; Frank M. Collins; Sheldon L. Morris

ABSTRACT DNA vaccination has emerged as a powerful approach in the search for a more efficacious vaccine against tuberculosis. In this study, we evaluated the effectiveness of immunizing with combinations of 10 different tuberculosis DNA vaccines that expressed mycobacterial proteins fused at the N terminus to eukaryotic intracellular targeting sequences. In one vaccine combination, the genes were fused to the tissue plasminogen activator signal sequence (TPA), while in a second combination the same 10 genes were expressed as ubiquitin (Ub)-conjugated proteins. In ex vivo studies in which the secretion of gamma interferon was measured, cellular immune responses were detected in mice vaccinated with either the TPA DNA vaccine combination or the Ub DNA vaccine combination at 7 and 14 days following a low-dose Mycobacterium tuberculosis challenge. Moreover, mice vaccinated with the TPA combination, the Ub combination, and Mycobacterium bovis BCG were able to limit the growth of tubercle bacilli in the lung and spleen after a virulent tuberculous aerosol challenge. Histopathological analyses also showed that mice immunized with the DNA vaccine combinations had substantially improved postinfection lung pathology relative to the naïve controls. Finally, in three different long-term experiments, the survival periods following aerogenic challenge were extended as much as sevenfold for vaccinated mice compared to naïve controls. Interestingly, in all three experiments, no significant differences were detected in the mean times to death for mice immunized with the TPA combination or the Ub combination relative to the BCG controls. In conclusion, these studies demonstrate the effectiveness of immunization with DNA vaccine combinations against tuberculosis and suggest that further testing of these plasmid cocktails is warranted.


Autophagy | 2012

ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells

Alessandra Romagnoli; Marilena P. Etna; Elena Giacomini; Manuela Pardini; Maria Elena Remoli; Marco Corazzari; Laura Falasca; Delia Goletti; Valérie Gafa; Roxane Simeone; Giovanni Delogu; Mauro Piacentini; Roland Brosch; Gian Maria Fimia; Eliana M. Coccia

Emerging evidence points to an important role of autophagy in the immune response mediated by dendritic cells (DC) against Mycobacterium tuberculosis (Mtb). Since current vaccination based on Bacillus Calmette-Guerin (BCG) is unable to stop the tuberculosis epidemic, a deeper comprehension of the alterations induced by Mtb in DC is essential for setting new vaccine strategies. Here, we compared the capacity of virulent (H37Rv) and avirulent (H37Ra) Mtb strains as well as BCG to modulate autophagy in human primary DC. We found that Mtb H37Rv impairs autophagy at the step of autophagosome-lysosome fusion. In contrast, neither Mtb H37Ra nor BCG strains were able to hamper autophagosome maturation. Both these attenuated strains have a functional inhibition of the 6kD early secreted antigenic target ESAT-6, an effector protein of the ESAT-6 Secretion System-1(ESX-1)/type VII secretion system. Notably, the ability to inhibit autophagy was fully restored in recombinant BCG and Mtb H37Ra strains in which ESAT-6 secretion was re-established by genetic complementation using either the ESX-1 region from Mtb (BCG::ESX-1) or the PhoP gene (Mtb H37Ra::PhoP), a regulator of ESAT-6 secretion. Importantly, the autophagic block induced by Mtb was overcome by rapamycin treatment leading to an increased interleukin-12 expression and, in turn, to an enhanced capacity to expand a Th1-oriented response. Collectively, our study demonstrated that Mtb alters the autophagic machinery through the ESX-1 system, and thereby opens new exciting perspectives to better understand the relationship between Mtb virulence and its ability to escape the DC-mediated immune response.


Nature Medicine | 2004

Methylation-dependent T cell immunity to Mycobacterium tuberculosis heparin-binding hemagglutinin

Stéphane Temmerman; Kevin Pethe; Marcela Parra; Sylvie Alonso; Carine Rouanet; Thames Pickett; Annie Drowart; Anne Sophie Debrie; Giovanni Delogu; Franco D. Menozzi; Christian Sergheraert; Michael J. Brennan; Françoise Mascart; Camille Locht

Although post-translational modifications of protein antigens may be important componenets of some B cell epitopes, the determinants of T cell immunity are generally nonmodified peptides. Here we show that methylation of the Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA) by the bacterium is essential for effective T cell immunity to this antigen in infected healthy humans and in mice. Methylated HBHA provides high levels of protection against M. tuberculosis challenge in mice, whereas nonmethylated HBHA does not. Protective immunity induced by methylated HBHA is comparable to that afforded by vaccination with bacille Calmette et Guérin, the only available anti-tuberculosis vaccine. Thus, post-translational modifications of proteins may be crucial for their ability to induce protective T cell-mediated immunity against infectious diseases such as tuberculosis.


Infection and Immunity | 2000

DNA vaccination against tuberculosis : Expression of a ubiquitin-conjugated tuberculosis protein enhances antimycobacterial immunity

Giovanni Delogu; Angela Howard; Frank M. Collins; Sheldon L. Morris

ABSTRACT Genetic immunization is a promising new technology for developing vaccines against tuberculosis that are more effective. In the present study, we evaluated the effects of intracellular turnover of antigens expressed by DNA vaccines on the immune response induced by these vaccines in a mouse model of pulmonary tuberculosis. The mycobacterial culture filtrate protein MPT64 was expressed as a chimeric protein fused to one of three variants of the ubiquitin protein (UbG, UbA, and UbGR) known to differentially affect the intracellular processing of the coexpressed antigens. Immunoblot analysis of cell lysates of in vitro-transfected cells showed substantial differences in the degradation rate of ubiquinated MPT64 (i.e., UbG64 < UbA64 < UbGR64). The specific immune response generated in mice correlated with the stability of the ubiquitin-conjugated antigen. The UbA64 DNA vaccine induced a weak humoral response compared to UbG64, and a mixed population of interleukin-4 (IL-4)- and gamma interferon (IFN-γ)-secreting cells. Vaccination with the UbGR64 plasmid generated a strong Th1 cell response (high IFN-γ, low IL-4) in the absence of a detectable humoral response. Aerogenic challenge of vaccinated mice with Mycobacterium tuberculosis indicated that immunization with both the UbA64- and UbGR64-expressing plasmids evoked an enhanced protective response compared to the vector control. The expression of mycobacterial antigens from DNA vaccines as fusion proteins with a destabilizing ubiquitin molecule (UbA or UbGR) shifted the host response toward a stronger Th1-type immunity which was characterized by low specific antibody levels, high numbers of IFN-γ-secreting cells, and significant resistance to a tuberculous challenge.


Molecular Microbiology | 2007

PE is a functional domain responsible for protein translocation and localization on mycobacterial cell wall.

Alessandro Cascioferro; Giovanni Delogu; Marisa Colone; Michela Sali; Annarita Stringaro; Giuseppe Arancia; Giovanni Fadda; Giorgio Palù; Riccardo Manganelli

The PE family of Mycobacterium tuberculosis includes 98 proteins which share a highly homologous N‐terminus sequence of about 110 amino acids (PE domain). Depending on the C‐terminal domain, the PE family can be divided in three subfamilies, the largest of which is the PE_PGRS with 61 members. In this study, we determined the cellular localization of three PE proteins by cell fractionation and immunoelectron microscopy by expressing chimeric epitope‐tagged recombinant proteins in Mycobacterium smegmatis. We demonstrate that the PE domain of PE_PGRS33 and PE11 (a protein constituted by the only PE domain) contains the information necessary for cell wall localization, and that they can be used as N‐terminal fusion partners to deliver a sufficiently long C‐terminus‐linked protein domain on the mycobacterial cell surface. Indeed, we demonstrate that PE_PGRS33 and Rv3097c (a lipase belonging to the PE family) are surface exposed and localize in the mycobacterial cell wall. Moreover, we found that PE_PGRS33 is easily extractable by detergents suggesting its localization in the mycobacterial outer membrane. Beyond defining the cellular localization of these proteins, and a function for their PE domains, these data open the interesting possibility to construct recombinant mycobacteria expressing heterologous antigens on their surface for vaccine purposes.


Infection and Immunity | 2006

Role of AFR1, an ABC Transporter-Encoding Gene, in the In Vivo Response to Fluconazole and Virulence of Cryptococcus neoformans

Maurizio Sanguinetti; Brunella Posteraro; Riccardo Torelli; Barbara Fiori; Rosaria Santangelo; Giovanni Delogu; Giovanni Fadda

ABSTRACT We have recently demonstrated that upregulation of the ATP binding cassette (ABC) transporter-encoding gene AFR1 in Cryptococcus neoformans is involved in the in vitro resistance to fluconazole of this yeast. In the present study, we investigated the role of AFR1 in the in vivo response to fluconazole in a mouse model of systemic cryptococcosis. Mice were infected with a wild-type fluconazole-susceptible strain of C. neoformans, strain BPY22; an afr1 mutant, BPY444, which displayed hypersusceptibility to fluconazole in vitro; or an AFR1-overexpressing strain, BPY445, which exhibited in vitro resistance to the drug. In each of the three groups, infected animals were randomly assigned to fluconazole treatment or untreated-control subgroups. As expected, fluconazole prolonged survival and reduced fungal tissue burdens (compared with no treatment) in BPY22- and BPY444-infected mice, whereas it had no significant effects in mice infected with BPY445. When the pathogenicities of these strains in mice were investigated, strain BPY445 was significantly more virulent than BPY22 following inhalational or intravenous inoculation, but mice infected with BPY444 survived significantly longer than BPY22-infected animals only when infection was acquired via the respiratory tract. In in vitro macrophage infection studies, strain BPY445 also displayed enhanced intracellular survival compared with strains BPY22 and BPY444, suggesting that its increased virulence may be due to its reduced vulnerability to the antimicrobial factors produced by phagocytic cells. These findings indicate that the upregulation of the AFR1 gene is an important factor in either determining the in vivo resistance to fluconazole or influencing the virulence of C. neoformans.

Collaboration


Dive into the Giovanni Delogu's collaboration.

Top Co-Authors

Avatar

Giovanni Fadda

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Michela Sali

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Maurizio Sanguinetti

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Delia Goletti

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivana Palucci

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Michael J. Brennan

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Francesco Ria

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge