Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Iacca is active.

Publication


Featured researches published by Giovanni Iacca.


european conference on applications of evolutionary computation | 2013

An evolutionary framework for routing protocol analysis in wireless sensor networks

Doina Bucur; Giovanni Iacca; Giovanni Squillero; Alberto Paolo Tonda

Wireless Sensor Networks (WSNs) are widely adopted for applications ranging from surveillance to environmental monitoring. While powerful and relatively inexpensive, they are subject to behavioural faults which make them unreliable. Due to the complex interactions between network nodes, it is difficult to uncover faults in a WSN by resorting to formal techniques for verification and analysis, or to testing. This paper proposes an evolutionary framework to detect anomalous behaviour related to energy consumption in WSN routing protocols. Given a collection protocol, the framework creates candidate topologies and evaluates them through simulation on the basis of metrics measuring the radio activity on nodes. Experimental results using the standard Collection Tree Protocol show that the proposed approach is able to unveil topologies plagued by excessive energy depletion over one or more nodes, and thus could be used as an offline debugging tool to understand and correct the issues before network deployment and during the development of new protocols.


Information Sciences | 2012

Ockham's Razor in memetic computing: Three stage optimal memetic exploration

Giovanni Iacca; Ferrante Neri; Ernesto Mininno; Yew-Soon Ong; Meng-Hiot Lim

Memetic computing is a subject in computer science which considers complex structures as the combination of simple agents, memes, whose evolutionary interactions lead to intelligent structures capable of problem-solving. This paper focuses on memetic computing optimization algorithms and proposes a counter-tendency approach for algorithmic design. Research in the field tends to go in the direction of improving existing algorithms by combining different methods or through the formulation of more complicated structures. Contrary to this trend, we instead focus on simplicity, proposing a structurally simple algorithm with emphasis on processing only one solution at a time. The proposed algorithm, namely three stage optimal memetic exploration, is composed of three memes; the first stochastic and with a long search radius, the second stochastic and with a moderate search radius and the third deterministic and with a short search radius. The bottom-up combination of the three operators by means of a natural trial and error logic, generates a robust and efficient optimizer, capable of competing with modern complex and computationally expensive algorithms. This is suggestive of the fact that complexity in algorithmic structures can be unnecessary, if not detrimental, and that simple bottom-up approaches are likely to be competitive is here invoked as an extension to memetic computing basing on the philosophical concept of Ockhams Razor. An extensive experimental setup on various test problems and one digital signal processing application is presented. Numerical results show that the proposed approach, despite its simplicity and low computational cost displays a very good performance on several problems, and is competitive with sophisticated algorithms representing the-state-of-the-art in computational intelligence optimization.


Information Sciences | 2013

Compact Particle Swarm Optimization

Ferrante Neri; Ernesto Mininno; Giovanni Iacca

Some real-world optimization problems are plagued by a limited hardware availability. This situation can occur, for example, when the optimization must be performed on a device whose hardware is limited due to cost and space limitations. This paper addresses this class of optimization problems and proposes a novel algorithm, namely compact Particle Swarm Optimization (cPSO). The proposed algorithm employs the search logic typical of Particle Swarm Optimization (PSO) algorithms, but unlike classical PSO algorithms, does not use a swarm of particles and does not store neither the positions nor the velocities. On the contrary, cPSO employs a probabilistic representation of the swarms behaviour. This representation allows a modest memory usage for the entire algorithmic functioning, the amount of memory used is the same as what is needed for storing five solutions. A novel interpretation of compact optimization is also given in this paper. Numerical results show that cPSO appears to outperform other modern algorithms of the same category (i.e. which attempt to solve the optimization despite a modest memory usage). In addition, cPSO displays a very good performance with respect to its population-based version and a respectable performance also with respect to some more complex population-based algorithms. A real world application in the field of power engineering and energy generation is given. The presented case study shows how, on a model of an actual power plant, an advanced control system can be online and real-time optimized. In this application example the calculations are embedded directly on the real-time control system.


Information Sciences | 2013

Parallel memetic structures

Fabio Caraffini; Ferrante Neri; Giovanni Iacca; Aran Mol

Memetic Computing (MC) structures are algorithms composed of heterogeneous operators (memes) for solving optimization problems. In order to address these problems, this study investigates and proposes a simple yet extremely efficient structure, namely Parallel Memetic Structure (PMS). PMS is a single solution optimization algorithm composed of tree operators, the first one being a stochastic global search which explores the entire decision space searching for promising regions. In analogy with electrical networks, downstream of the global search component there is a parallel of two alternative elements, i.e. two local search algorithms with different features in terms of search logic, whose purpose is to refine the search in the regions detected by the upstream element. The first local search explores the space along the axes, while the second performs diagonal movements in the direction of the estimated gradient. The PMS algorithm, despite its simplicity, displays a respectable performance compared to that of popular meta-heuristics and modern optimization algorithms representing the state-of-the-art in the field. Thanks to its simple structure, PMS appears to be a very flexible algorithm for various problem features and dimensionality values. Unlike modern complex algorithm that are specialized for some benchmarks and some dimensionality values, PMS achieves solutions with a high quality in various and diverse contexts, for example both on low dimensional and large scale problems. An application example in the field of magnetic sensors further proves the potentials of the proposed approach. This study confirms the validity of the Ockhams Razor in MC: efficiently designed simple structures can perform as well as (if not better than) complex algorithms composed of many parts.


International Journal of Neural Systems | 2014

Multi-strategy coevolving aging particle optimization

Giovanni Iacca; Fabio Caraffini; Ferrante Neri

We propose Multi-Strategy Coevolving Aging Particles (MS-CAP), a novel population-based algorithm for black-box optimization. In a memetic fashion, MS-CAP combines two components with complementary algorithm logics. In the first stage, each particle is perturbed independently along each dimension with a progressively shrinking (decaying) radius, and attracted towards the current best solution with an increasing force. In the second phase, the particles are mutated and recombined according to a multi-strategy approach in the fashion of the ensemble of mutation strategies in Differential Evolution. The proposed algorithm is tested, at different dimensionalities, on two complete black-box optimization benchmarks proposed at the Congress on Evolutionary Computation 2010 and 2013. To demonstrate the applicability of the approach, we also test MS-CAP to train a Feedforward Neural Network modeling the kinematics of an 8-link robot manipulator. The numerical results show that MS-CAP, for the setting considered in this study, tends to outperform the state-of-the-art optimization algorithms on a large set of problems, thus resulting in a robust and versatile optimizer.


congress on evolutionary computation | 2013

Super-fit Multicriteria Adaptive Differential Evolution

Fabio Caraffini; Ferrante Neri; Jixiang Cheng; Gexiang Zhang; Lorenzo Picinali; Giovanni Iacca; Ernesto Mininno

This paper proposes an algorithm to solve the CEC2013 benchmark. The algorithm, namely Super-fit Multicriteria Adaptive Differential Evolution (SMADE), is a Memetic Computing approach based on the hybridization of two algorithmic schemes according to a super-fit memetic logic. More specifically, the Covariance Matrix Adaptive Evolution Strategy (CMAES), run at the beginning of the optimization process, is used to generate a solution with a high quality. This solution is then injected into the population of a modified Differential Evolution, namely Multicriteria Adaptive Differential Evolution (MADE). The improved solution is super-fit as it supposedly exhibits a performance a way higher than the other population individuals. The super-fit individual then leads the search of the MADE scheme towards the optimum. Unimodal or mildly multimodal problems, even when non-separable and ill-conditioned, tend to be solved during the early stages of the optimization by the CMAES. Highly multi-modal optimization problems are efficiently tackled by SMADE since the MADE algorithm (as well as other Differential Evolution schemes) appears to work very well when the search is led by a super-fit individual.


ad hoc networks | 2015

Ensembles of incremental learners to detect anomalies in ad hoc sensor networks

Hedde H. W. J. Bosman; Giovanni Iacca; Arturo Tejada; Heinrich J. Wörtche; Antonio Liotta

Display Omitted In the past decade, rapid technological advances in the fields of electronics and telecommunications have given rise to versatile, ubiquitous decentralized embedded sensor systems with ad hoc wireless networking capabilities. Typically these systems are used to gather large amounts of data, while the detection of anomalies (such as system failures, intrusion, or unanticipated behavior of the environment) in the data (or other types or processing) is performed in centralized computer systems. In spite of the great interest that it attracts, the systematic porting and analysis of centralized anomaly detection algorithms to a decentralized paradigm (compatible with the aforementioned sensor systems) has not been thoroughly addressed in the literature. We approach this task from a new angle, assessing the viability of localized (in-node) anomaly detection based on machine learning. The main challenges we address are: (1) deploying decentralized, automated, online learning, anomaly detection algorithms within the stringent constraints of typical embedded systems; and (2) evaluating the performance of such algorithms and comparing them with that of centralized ones. To this end, we first analyze (and port) single and multi-dimensional input classifiers that are trained incrementally online and whose computational requirements are compatible with the limitations of embedded platforms. Next, we combine multiple classifiers in a single online ensemble. Then, using both synthetic and real-world datasets from different application domains, we extensively evaluate the anomaly detection performance of our algorithms and ensemble, in terms of precision and recall, and compare it to that of well-known offline, centralized machine learning algorithms. Our results show that the ensemble performs better than each individual decentralized classifier and that it can match the performance of the offline alternatives, thus showing that our approach is a viable solution to detect anomalies, even in environments with little a priori knowledge.


congress on evolutionary computation | 2013

A CMA-ES super-fit scheme for the re-sampled inheritance search

Fabio Caraffini; Giovanni Iacca; Ferrante Neri; Lorenzo Picinali; Ernesto Mininno

The super-fit scheme, consisting of injecting an individual with high fitness into the initial population of an algorithm, has shown to be a simple and effective way to enhance the algorithmic performance of the population-based algorithm. Whether the super-fit individual is based on some prior knowledge on the optimization problem or is derived from an initial step of pre-processing, e.g. a local search, this mechanism has been applied successfully in various examples of evolutionary and swarm intelligence algorithms. This paper presents an unconventional application of this super-fit scheme, where the super-fit individual is obtained by means of the Covariance Adaptation Matrix Evolution Strategy (CMA-ES), and fed to a single solution local search which perturbs iteratively each variable. Thus, compared to other super-fit schemes, the roles of super-fit individual generator and global optimizer are switched. To prevent premature convergence, the local search employs a re-sampling mechanism which inherits parts of the best individual while randomly sampling the remaining variables. We refer to such local search as Re-sampled Inheritance Search (RIS). Tested on the CEC 2013 optimization benchmark, the proposed algorithm, named CMA-ES-RIS, displays a respectable performance and a good balance between exploration and exploitation, resulting into a versatile and robust optimization tool.


Expert Systems With Applications | 2014

A modified Covariance Matrix Adaptation Evolution Strategy with adaptive penalty function and restart for constrained optimization

Vinicius Veloso de Melo; Giovanni Iacca

In the last decades, a number of novel meta-heuristics and hybrid algorithms have been proposed to solve a great variety of optimization problems. Among these, constrained optimization problems are considered of particular interest in applications from many different domains. The presence of multiple constraints can make optimization problems particularly hard to solve, thus imposing the use of specific techniques to handle fitness landscapes which generally show complex properties. In this paper, we introduce a modified Covariance Matrix Adaptation Evolution Strategy (CMA-ES) specifically designed for solving constrained optimization problems. The proposed method makes use of the restart mechanism typical of most modern variants of CMA-ES, and handles constraints by means of an adaptive penalty function. This novel CMA-ES scheme presents competitive results on a broad set of benchmark functions and engineering problems, outperforming most state-of-the-art algorithms as for both efficiency and constraint handling.


soft computing | 2013

Re-sampled inheritance search: high performance despite the simplicity

Fabio Caraffini; Ferrante Neri; Benjamin N. Passow; Giovanni Iacca

This paper proposes re-sampled inheritance search (RIS), a novel algorithm for solving continuous optimization problems. The proposed method, belonging to the class of Memetic Computing, is very simple and low demanding in terms of memory employment and computational overhead. The RIS algorithm is composed of a stochastic sample mechanism and a deterministic local search. The first operator randomly generates a solution and then recombines it with the best solution detected so far (inheritance) while the second operator searches in an exploitative way within the neighbourhood indicated by the stochastic operator. This extremely simple scheme is shown to display a very good performance on various problems, including hard to solve multi-modal, highly-conditioned, large scale problems. Experimental results show that the proposed RIS is a robust scheme that competitively performs with respect to recent complex algorithms representing the-state-of-the-art in modern continuous optimization. In order to further prove its applicability in real-world cases, RIS has been used to perform the control system tuning for yaw operations on a helicopter robot. Experimental results on this real-world problem confirm the value of the proposed approach.

Collaboration


Dive into the Giovanni Iacca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernesto Mininno

Information Technology University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doina Bucur

University of Groningen

View shared research outputs
Top Co-Authors

Avatar

Alberto Paolo Tonda

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Anil Yaman

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Antonio Liotta

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hedde H. W. J. Bosman

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Heinrich J. Wörtche

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rammohan Mallipeddi

Kyungpook National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge