Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Marsico is active.

Publication


Featured researches published by Giovanni Marsico.


Nature Biotechnology | 2013

Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape

Jerome Gilleron; William Querbes; Anja Zeigerer; Anna Borodovsky; Giovanni Marsico; Undine Schubert; Kevin Manygoats; Sarah Seifert; Cordula Andree; Martin Stöter; Hila Epstein-Barash; Ligang Zhang; Victor Koteliansky; Kevin Fitzgerald; Eugenio Fava; Marc Bickle; Yannis Kalaidzidis; Akin Akinc; Martin Maier; Marino Zerial

Delivery of short interfering RNAs (siRNAs) remains a key challenge in the development of RNA interference (RNAi) therapeutics. A better understanding of the mechanisms of siRNA cellular uptake, intracellular transport and endosomal release could critically contribute to the improvement of delivery methods. Here we monitored the uptake of lipid nanoparticles (LNPs) loaded with traceable siRNAs in different cell types in vitro and in mouse liver by quantitative fluorescence imaging and electron microscopy. We found that LNPs enter cells by both constitutive and inducible pathways in a cell type-specific manner using clathrin-mediated endocytosis as well as macropinocytosis. By directly detecting colloidal-gold particles conjugated to siRNAs, we estimated that escape of siRNAs from endosomes into the cytosol occurs at low efficiency (1–2%) and only during a limited window of time when the LNPs reside in a specific compartment sharing early and late endosomal characteristics. Our results provide insights into LNP-mediated siRNA delivery that can guide development of the next generation of delivery systems for RNAi therapeutics.


Nature Biotechnology | 2015

High-throughput sequencing of DNA G-quadruplex structures in the human genome

Vicki S. Chambers; Giovanni Marsico; Jonathan Mark Boutell; Marco Di Antonio; Geoffrey Paul Smith; Shankar Balasubramanian

G-quadruplexes (G4s) are nucleic acid secondary structures that form within guanine-rich DNA or RNA sequences. G4 formation can affect chromatin architecture and gene regulation and has been associated with genomic instability, genetic diseases and cancer progression. Here we present a high-resolution sequencing–based method to detect G4s in the human genome. We identified 716,310 distinct G4 structures, 451,646 of which were not predicted by computational methods. These included previously uncharacterized noncanonical long loop and bulged structures. We observed a high G4 density in functional regions, such as 5′ untranslated regions and splicing sites, as well as in genes previously not predicted to contain these structures (such as BRCA2). G4 formation was significantly associated with oncogenes, tumor suppressors and somatic copy number alterations related to cancer development. The G4s identified in this study may therefore represent promising targets for cancer intervention.


Nature | 2012

Rab5 is necessary for the biogenesis of the endolysosomal system in vivo

Anja Zeigerer; Jerome Gilleron; Roman L. Bogorad; Giovanni Marsico; Hidenori Nonaka; Sarah Seifert; Hila Epstein-Barash; Satya Kuchimanchi; Chang Geng Peng; Vera M. Ruda; Perla Del Conte-Zerial; Jan G. Hengstler; Yannis Kalaidzidis; Victor Koteliansky; Marino Zerial

An outstanding question is how cells control the number and size of membrane organelles. The small GTPase Rab5 has been proposed to be a master regulator of endosome biogenesis. Here, to test this hypothesis, we developed a mathematical model of endosome dependency on Rab5 and validated it by titrating down all three Rab5 isoforms in adult mouse liver using state-of-the-art RNA interference technology. Unexpectedly, the endocytic system was resilient to depletion of Rab5 and collapsed only when Rab5 decreased to a critical level. Loss of Rab5 below this threshold caused a marked reduction in the number of early endosomes, late endosomes and lysosomes, associated with a block of low-density lipoprotein endocytosis. Loss of endosomes caused failure to deliver apical proteins to the bile canaliculi, suggesting a requirement for polarized cargo sorting. Our results demonstrate for the first time, to our knowledge, the role of Rab5 as an endosome organizer in vivo and reveal the resilience mechanisms of the endocytic system.


Scientific Reports | 2012

Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice

Francisco Pan-Montojo; Mathias Schwarz; Clemens Winkler; Mike Arnhold; Gregory A. O'Sullivan; Arun Pal; Jonas Said; Giovanni Marsico; Jean Marc Verbavatz; Margarita Rodrigo-Angulo; Gabriele Gille; Richard Funk; Heinz Reichmann

Pathological studies on Parkinsons disease (PD) patients suggest that PD pathology progresses from the enteric nervous system (ENS) and the olfactory bulb into the central nervous system. We have previously shown that environmental toxins acting locally on the ENS mimic this PD-like pathology progression pattern in mice. Here, we show for the first time that the resection of the autonomic nerves stops this progression. Moreover, our results show that an environmental toxin (i.e. rotenone) promotes the release of alpha-synuclein by enteric neurons and that released enteric alpha-synuclein is up-taken by presynaptic sympathetic neurites and retrogradely transported to the soma, where it accumulates. These results strongly suggest that pesticides can initiate the progression of PD pathology and that this progression is based on the transneuronal and retrograde axonal transport of alpha-synuclein. If confirmed in patients, this study would have crucial implications in the strategies used to prevent and treat PD.


Nature Chemistry | 2014

Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution

Michael J. Booth; Giovanni Marsico; Martin Bachman; Dario Beraldi; Shankar Balasubramanian

Recently, the cytosine modifications 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) were found to exist in the genomic deoxyribonucleic acid (DNA) of a wide range of mammalian cell types. It is now important to understand their role in normal biological function and disease. Here we introduce reduced bisulfite sequencing (redBS-Seq), a quantitative method to decode 5fC in DNA at single-base resolution, based on a selective chemical reduction of 5fC to 5hmC followed by bisulfite treatment. After extensive validation on synthetic and genomic DNA, we combined redBS-Seq and oxidative bisulfite sequencing (oxBS-Seq) to generate the first combined genomic map of 5-methylcytosine, 5hmC and 5fC in mouse embryonic stem cells. Our experiments revealed that in certain genomic locations 5fC is present at comparable levels to 5hmC and 5mC. The combination of these chemical methods can quantify and precisely map these three cytosine derivatives in the genome and will help provide insights into their function.


Nature Genetics | 2016

G-quadruplex structures mark human regulatory chromatin

Robert Hänsel-Hertsch; Dario Beraldi; Stefanie V Lensing; Giovanni Marsico; Katherine Zyner; Aled Parry; Marco Di Antonio; Jeremy Pike; Hiroshi Kimura; Masashi Narita; David Tannahill; Shankar Balasubramanian

G-quadruplex (G4) structural motifs have been linked to transcription, replication and genome instability and are implicated in cancer and other diseases. However, it is crucial to demonstrate the bona fide formation of G4 structures within an endogenous chromatin context. Herein we address this through the development of G4 ChIP–seq, an antibody-based G4 chromatin immunoprecipitation and high-throughput sequencing approach. We find ∼10,000 G4 structures in human chromatin, predominantly in regulatory, nucleosome-depleted regions. G4 structures are enriched in the promoters and 5′ UTRs of highly transcribed genes, particularly in genes related to cancer and in somatic copy number amplifications, such as MYC. Strikingly, de novo and enhanced G4 formation are associated with increased transcriptional activity, as shown by HDAC inhibitor–induced chromatin relaxation and observed in immortalized as compared to normal cellular states. Our findings show that regulatory, nucleosome-depleted chromatin and elevated transcription shape the endogenous human G4 DNA landscape.


Nature Communications | 2014

Suppression of the FOXM1 transcriptional programme via novel small molecule inhibition

Michael V. Gormally; Thomas S. Dexheimer; Giovanni Marsico; Deborah A. Sanders; Christopher R. Lowe; Dijana Matak-Vinkovic; Sam Michael; Ajit Jadhav; Ganesha Rai; David J. Maloney; Anton Simeonov; Shankar Balasubramanian

The transcription factor FOXM1 binds to sequence-specific motifs on DNA (C/TAAACA) through its DNA binding domain (DBD), and activates proliferation- and differentiation-associated genes. Aberrant overexpression of FOXM1 is a key feature in oncogenesis and progression of many human cancers. Here — from a high-throughput screen applied to a library of 54,211 small molecules — we identify novel small molecule inhibitors of FOXM1 that block DNA binding. One of the identified compounds: FDI-6 (NCGC00099374) is characterized in depth and is shown to bind directly to FOXM1 protein, to displace FOXM1 from genomic targets in MCF-7 breast cancer cells, and induce concomitant transcriptional down-regulation. Global transcript profiling of MCF-7 cells by RNA-seq shows that FDI-6 specifically down regulates FOXM1-activated genes with FOXM1 occupancy confirmed by ChIP-seq. This small molecule mediated effect is selective for FOXM1-controlled genes with no effect on genes regulated by homologous forkhead family factors.


Nature Methods | 2016

rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome

Chun Kit Kwok; Giovanni Marsico; Aleksandr B. Sahakyan; Vicki S. Chambers; Shankar Balasubramanian

We introduce RNA G-quadruplex sequencing (rG4-seq), a transcriptome-wide RNA G-quadruplex (rG4) profiling method that couples rG4-mediated reverse transcriptase stalling with next-generation sequencing. Using rG4-seq on polyadenylated-enriched HeLa RNA, we generated a global in vitro map of thousands of canonical and noncanonical rG4 structures. We characterize rG4 formation relative to cytosine content and alternative RNA structure stability, uncover rG4-dependent differences in RNA folding and show evolutionarily conserved enrichment in transcripts mediating RNA processing and stability.


Cell Host & Microbe | 2013

Integration of Chemical and RNAi Multiparametric Profiles Identifies Triggers of Intracellular Mycobacterial Killing

Varadharajan Sundaramurthy; Rico Barsacchi; Nikolay Samusik; Giovanni Marsico; Jerome Gilleron; Inna V Kalaidzidis; Felix Meyenhofer; Marc Bickle; Yannis Kalaidzidis; Marino Zerial

Pharmacological modulators of host-microbial interactions can in principle be identified using high-content screens. However, a severe limitation of this approach is the lack of insights into the mode of action of compounds selected during the primary screen. To overcome this problem, we developed a combined experimental and computational approach. We designed a quantitative multiparametric image-based assay to measure intracellular mycobacteria in primary human macrophages, screened a chemical library containing FDA-approved drugs, and validated three compounds for intracellular killing of M. tuberculosis. By integrating the multiparametric profiles of the chemicals with those of siRNAs from a genome-wide survey on endocytosis, we predicted and experimentally verified that two compounds modulate autophagy, whereas the third accelerates endosomal progression. Our findings demonstrate the value of integrating small molecules and genetic screens for identifying cellular mechanisms modulated by chemicals. Furthermore, selective pharmacological modulation of host trafficking pathways can be applied to intracellular pathogens beyond mycobacteria.


Nature Methods | 2016

DSBCapture: in situ capture and sequencing of DNA breaks

Stefanie V Lensing; Giovanni Marsico; Robert Hänsel-Hertsch; Enid Lam; David Tannahill; Shankar Balasubramanian

Double-strand DNA breaks (DSBs) continuously arise and cause mutations and chromosomal rearrangements. Here, we present DSBCapture, a sequencing-based method that captures DSBs in situ and directly maps these at single-nucleotide resolution, enabling the study of DSB origin. DSBCapture shows substantially increased sensitivity and data yield compared with other methods. Using DSBCapture, we uncovered a striking relationship between DSBs and elevated transcription within nucleosome-depleted chromatin.

Collaboration


Dive into the Giovanni Marsico's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Tannahill

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerome Gilleron

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge