Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Montana is active.

Publication


Featured researches published by Giovanni Montana.


NeuroImage | 2010

Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach

Maria Vounou; Thomas E. Nichols; Giovanni Montana

There is growing interest in performing genome-wide searches for associations between genetic variants and brain imaging phenotypes. While much work has focused on single scalar valued summaries of brain phenotype, accounting for the richness of imaging data requires a brain-wide, genome-wide search. In particular, the standard approach based on mass-univariate linear modelling (MULM) does not account for the structured patterns of correlations present in each domain. In this work, we propose sparse reduced rank regression (sRRR), a strategy for multivariate modelling of high-dimensional imaging responses (measurements taken over regions of interest or individual voxels) and genetic covariates (single nucleotide polymorphisms or copy number variations), which enforces sparsity in the regression coefficients. Such sparsity constraints ensure that the model performs simultaneous genotype and phenotype selection. Using simulation procedures that accurately reflect realistic human genetic variation and imaging correlations, we present detailed evaluations of the sRRR method in comparison with the more traditional MULM approach. In all settings considered, sRRR has better power to detect deleterious genetic variants compared to MULM. Important issues concerning model selection and connections to existing latent variable models are also discussed. This work shows that sRRR offers a promising alternative for detecting brain-wide, genome-wide associations.


American Journal of Physiology-endocrinology and Metabolism | 2014

Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice

Meritxell Rosell; Myrsini Kaforou; Andrea Frontini; Anthony Okolo; Yi-Wah Chan; Evanthia Nikolopoulou; Steven Millership; Matthew Fenech; David A. MacIntyre; Jeremy Turner; Jonathan D. Moore; Edith Blackburn; William J. Gullick; Saverio Cinti; Giovanni Montana; Malcolm G. Parker; Mark Christian

Brown adipocytes dissipate energy, whereas white adipocytes are an energy storage site. We explored the plasticity of different white adipose tissue depots in acquiring a brown phenotype by cold exposure. By comparing cold-induced genes in white fat to those enriched in brown compared with white fat, at thermoneutrality we defined a “brite” transcription signature. We identified the genes, pathways, and promoter regulatory motifs associated with “browning,” as these represent novel targets for understanding this process. For example, neuregulin 4 was more highly expressed in brown adipose tissue and upregulated in white fat upon cold exposure, and cell studies showed that it is a neurite outgrowth-promoting adipokine, indicative of a role in increasing adipose tissue innervation in response to cold. A cell culture system that allows us to reproduce the differential properties of the discrete adipose depots was developed to study depot-specific differences at an in vitro level. The key transcriptional events underpinning white adipose tissue to brown transition are important, as they represent an attractive proposition to overcome the detrimental effects associated with metabolic disorders, including obesity and type 2 diabetes.


NeuroImage | 2011

False positives in neuroimaging genetics using voxel-based morphometry data

Matt Silver; Giovanni Montana; Thomas E. Nichols

Voxel-wise statistical inference is commonly used to identify significant experimental effects or group differences in both functional and structural studies of the living brain. Tests based on the size of spatially extended clusters of contiguous suprathreshold voxels are also widely used due to their typically increased statistical power. In “imaging genetics”, such tests are used to identify regions of the brain that are associated with genetic variation. However, concerns have been raised about the adequate control of rejection rates in studies of this type. A previous study tested the effect of a set of ‘null’ SNPs on brain structure and function, and found that false positive rates were well-controlled. However, no similar analysis of false positive rates in an imaging genetic study using cluster size inference has yet been undertaken. We measured false positive rates in an investigation of the effect of 700 pre-selected null SNPs on grey matter volume using voxel-based morphometry (VBM). As VBM data exhibit spatially-varying smoothness, we used both non-stationary and stationary cluster size tests in our analysis. Image and genotype data on 181 subjects with mild cognitive impairment were obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI). At a nominal significance level of 5%, false positive rates were found to be well-controlled (3.9–5.6%), using a relatively high cluster-forming threshold, αc = 0.001, on images smoothed with a 12 mm Gaussian kernel. Tests were however anticonservative at lower cluster-forming thresholds (αc = 0.01, 0.05), and for images smoothed using a 6 mm Gaussian kernel. Here false positive rates ranged from 9.8 to 67.6%. In a further analysis, false positive rates using simulated data were observed to be well-controlled across a wide range of conditions. While motivated by imaging genetics, our findings apply to any VBM study, and suggest that parametric cluster size inference should only be used with high cluster-forming thresholds and smoothness. We would advocate the use of nonparametric methods in other cases.


Developmental Cell | 2012

Smchd1-dependent and -independent pathways determine developmental dynamics of CpG island methylation on the inactive X chromosome.

Anne-Valerie Gendrel; Anwyn Apedaile; Heather Coker; Ausma Termanis; Ilona Zvetkova; Jonathan Godwin; Y. Amy Tang; Derek Huntley; Giovanni Montana; Steven Taylor; Eleni Giannoulatou; Edith Heard; Irina Stancheva; Neil Brockdorff

Summary X chromosome inactivation involves multiple levels of chromatin modification, established progressively and in a stepwise manner during early development. The chromosomal protein Smchd1 was recently shown to play an important role in DNA methylation of CpG islands (CGIs), a late step in the X inactivation pathway that is required for long-term maintenance of gene silencing. Here we show that inactive X chromosome (Xi) CGI methylation can occur via either Smchd1-dependent or -independent pathways. Smchd1-dependent CGI methylation, the primary pathway, is acquired gradually over an extended period, whereas Smchd1-independent CGI methylation occurs rapidly after the onset of X inactivation. The de novo methyltransferase Dnmt3b is required for methylation of both classes of CGI, whereas Dnmt3a and Dnmt3L are dispensable. Xi CGIs methylated by these distinct pathways differ with respect to their sequence characteristics and immediate chromosomal environment. We discuss the implications of these results for understanding CGI methylation during development.


NeuroImage | 2012

Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer's disease.

Maria Vounou; Eva Janoušová; Robin Wolz; Jason L. Stein; Paul M. Thompson; Daniel Rueckert; Giovanni Montana

Scanning the entire genome in search of variants related to imaging phenotypes holds great promise in elucidating the genetic etiology of neurodegenerative disorders. Here we discuss the application of a penalized multivariate model, sparse reduced-rank regression (sRRR), for the genome-wide detection of markers associated with voxel-wise longitudinal changes in the brain caused by Alzheimers disease (AD). Using a sample from the Alzheimers Disease Neuroimaging Initiative database, we performed three separate studies that each compared two groups of individuals to identify genes associated with disease development and progression. For each comparison we took a two-step approach: initially, using penalized linear discriminant analysis, we identified voxels that provide an imaging signature of the disease with high classification accuracy; then we used this multivariate biomarker as a phenotype in a genome-wide association study, carried out using sRRR. The genetic markers were ranked in order of importance of association to the phenotypes using a data re-sampling approach. Our findings confirmed the key role of the APOE and TOMM40 genes but also highlighted some novel potential associations with AD.


computer vision and pattern recognition | 2015

Deep neural networks for anatomical brain segmentation

Alexandre de Brebisson; Giovanni Montana

We present a novel approach to automatically segment magnetic resonance (MR) images of the human brain into anatomical regions. Our methodology is based on a deep artificial neural network that assigns each voxel in an MR image of the brain to its corresponding anatomical region. The inputs of the network capture information at different scales around the voxel of interest: 3D and orthogonal 2D intensity patches capture a local spatial context while downscaled large 2D orthogonal patches and distances to the regional centroids enforce global spatial consistency. Contrary to commonly used segmentation methods, our technique does not require any non-linear registration of the MR images. To benchmark our model, we used the dataset provided for the MICCAI 2012 challenge on multi-atlas labelling, which consists of 35 manually segmented MR images of the brain. We obtained competitive results (mean dice coefficient 0.725, error rate 0.163) showing the potential of our approach. To our knowledge, our technique is the first to tackle the anatomical segmentation of the whole brain using deep neural networks.


NeuroImage | 2014

Estimating time-varying brain connectivity networks from functional MRI time series

Ricardo Pio Monti; Peter J. Hellyer; David J. Sharp; Robert Leech; Christoforos Anagnostopoulos; Giovanni Montana

At the forefront of neuroimaging is the understanding of the functional architecture of the human brain. In most applications functional networks are assumed to be stationary, resulting in a single network estimated for the entire time course. However recent results suggest that the connectivity between brain regions is highly non-stationary even at rest. As a result, there is a need for new brain imaging methodologies that comprehensively account for the dynamic nature of functional networks. In this work we propose the Smooth Incremental Graphical Lasso Estimation (SINGLE) algorithm which estimates dynamic brain networks from fMRI data. We apply the proposed algorithm to functional MRI data from 24 healthy patients performing a Choice Reaction Task to demonstrate the dynamic changes in network structure that accompany a simple but attentionally demanding cognitive task. Using graph theoretic measures we show that the properties of the Right Inferior Frontal Gyrus and the Right Inferior Parietal lobe dynamically change with the task. These regions are frequently reported as playing an important role in cognitive control. Our results suggest that both these regions play a key role in the attention and executive function during cognitively demanding tasks and may be fundamental in regulating the balance between other brain regions.


Cerebral Cortex | 2014

Whole-Brain Mapping of Structural Connectivity in Infants Reveals Altered Connection Strength Associated with Growth and Preterm Birth

Anand Pandit; Emma C. Robinson; Paul Aljabar; Gareth Ball; Ioannis S. Gousias; Zehan Wang; Jo Hajnal; Daniel Rueckert; Serena J. Counsell; Giovanni Montana; Alexander D. Edwards

Cerebral white-matter injury is common in preterm-born infants and is associated with neurocognitive impairments. Identifying the pattern of connectivity changes in the brain following premature birth may provide a more comprehensive understanding of the neurobiology underlying these impairments. Here, we characterize whole-brain, macrostructural connectivity following preterm delivery and explore the influence of age and prematurity using a data-driven, nonsubjective analysis of diffusion magnetic resonance imaging data. T1- and T2-weighted and -diffusion MRI were obtained between 11 and 31 months postconceptional age in 49 infants, born between 25 and 35 weeks postconception. An optimized processing pipeline, combining anatomical, and tissue segmentations with probabilistic diffusion tractography, was used to map mean tract anisotropy. White-matter tracts where connection strength was related to age of delivery or imaging were identified using sparse-penalized regression and stability selection. Older children had stronger connections in tracts predominantly involving frontal lobe structures. Increasing prematurity at birth was related to widespread reductions in connection strength in tracts involving all cortical lobes and several subcortical structures. This nonsubjective approach to mapping whole-brain connectivity detected hypothesized changes in the strength of intracerebral connections during development and widespread reductions in connectivity strength associated with premature birth.


NeuroImage | 2012

Identification of gene pathways implicated in Alzheimer's disease using longitudinal imaging phenotypes with sparse regression.

Matt Silver; Eva Janoušová; Xue Hua; Paul M. Thompson; Giovanni Montana

We present a new method for the detection of gene pathways associated with a multivariate quantitative trait, and use it to identify causal pathways associated with an imaging endophenotype characteristic of longitudinal structural change in the brains of patients with Alzheimers disease (AD). Our method, known as pathways sparse reduced-rank regression (PsRRR), uses group lasso penalised regression to jointly model the effects of genome-wide single nucleotide polymorphisms (SNPs), grouped into functional pathways using prior knowledge of gene–gene interactions. Pathways are ranked in order of importance using a resampling strategy that exploits finite sample variability. Our application study uses whole genome scans and MR images from 99 probable AD patients and 164 healthy elderly controls in the Alzheimers Disease Neuroimaging Initiative (ADNI) database. 66,182 SNPs are mapped to 185 gene pathways from the KEGG pathway database. Voxel-wise imaging signatures characteristic of AD are obtained by analysing 3D patterns of structural change at 6, 12 and 24 months relative to baseline. High-ranking, AD endophenotype-associated pathways in our study include those describing insulin signalling, vascular smooth muscle contraction and focal adhesion. All of these have been previously implicated in AD biology. In a secondary analysis, we investigate SNPs and genes that may be driving pathway selection. High ranking genes include a number previously linked in gene expression studies to β-amyloid plaque formation in the AD brain (PIK3R3, PIK3CG, PRKCA and PRKCB), and to AD related changes in hippocampal gene expression (ADCY2, ACTN1, ACACA, and GNAI1). Other high ranking previously validated AD endophenotype-related genes include CR1, TOMM40 and APOE.


Bioinformatics | 2005

HapSim: a simulation tool for generating haplotype data with pre-specified allele frequencies and LD coefficients

Giovanni Montana

UNLABELLED We have developed a simulation tool HapSim for the generation of haplotype data. The simulated haplotypes are such that their allele frequencies and linkage disequilibrium coefficients match exactly those estimated in a real sample. AVAILABILITY The program is available as an R package and can be downloaded from http://cran.r-project.org/.

Collaboration


Dive into the Giovanni Montana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Leech

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Romy Lorenz

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Maria Vounou

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurice Berk

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zi Wang

King's College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge