Giovanni Pizzi
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giovanni Pizzi.
Computer Physics Communications | 2014
Giovanni Pizzi; Dmitri Volja; Boris Kozinsky; Marco Fornari; Nicola Marzari
We present a new code to evaluate thermoelectric and electronic transport properties of extended systems with a maximally-localized Wannier function basis set. The semiclassical Boltzmann transport equations for the homogeneous infinite system are solved in the constant relaxation-time approximation and band energies and band derivatives are obtained via Wannier interpolations. Thanks to the exponential localization of the Wannier functions obtained, very high accuracy in the Brillouin zone integrals can be achieved with very moderate computational costs. Moreover, the analytical expression for the band derivatives in the Wannier basis resolves any issues that may occur when evaluating derivatives near band crossings. The code is tested on binary and ternary skutterudites CoSb3 and CoGe3/2 S-3/2. Program summary Program title: BoltzWann Catalogue identifier: AEQX_v1_0 Program summaiy URL: http://cpc.cs.qub.ac.uk/summaries/AEQX_v1_0.html Program obtainable from: CPC Program Library, Queens University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 710 810 No. of bytes in distributed program, including test data, etc.: 8 337 000 Distribution format: tar.gz Programming language: Fortran 90. Computer: Any architecture with a Fortran 90 compiler. Operating system: Linux, Windows, Solaris, AIX, Tru64 Unix, OSX. Has the code been vectorized or parallelized?: Yes. RAM: The example requires approximately 10 MB. Classification: 7.3, 7.9. External routines: BLAS and LAPACK (available on http://www.netlib.org/); MPI libraries (optional) for parallel execution Nature of problem: Obtain electronic and thermoelectric transport properties for crystals. Solution method: The Boltzmann transport equations in the constant relaxation-time approximation are used. These equations require the integration of the band velocities over all the Brillouin zone; this is done numerically on a sufficiently dense k grid. Band energies and band derivatives are obtained by interpolation using the maximally-localized Wannier functions basis obtained with a preliminary run of the Wannier90 code. Unusual features: The maximally-localized Wannier functions interpolation scheme allows the use of analytical formulas (instead of finite-difference methods) to obtain the band derivatives. Additional comments: This is a package that is tightly integrated with the Wannier90 code (http://www.wannier.org). The Wannier90 code is included in the distribution package. Running time: The example runs (in its serial version) in less than 2 min
Nature Nanotechnology | 2018
Nicolas Mounet; Marco Gibertini; Philippe Schwaller; Davide Campi; Andrius Merkys; Antimo Marrazzo; Thibault Sohier; Ivano Eligio Castelli; Andrea Cepellotti; Giovanni Pizzi; Nicola Marzari
Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.The largest available database of potentially exfoliable 2D materials has been obtained via high-throughput calculations using van der Waals density functional theory.
Nature Communications | 2016
Giovanni Pizzi; Marco Gibertini; Elias Dib; Nicola Marzari; Giuseppe Iannaccone; Gianluca Fiori
In the race towards high-performance ultra-scaled devices, two-dimensional materials offer an alternative paradigm thanks to their atomic thickness suppressing short-channel effects. It is thus urgent to study the most promising candidates in realistic configurations, and here we present detailed multiscale simulations of field-effect transistors based on arsenene and antimonene monolayers as channels. The accuracy of first-principles approaches in describing electronic properties is combined with the efficiency of tight-binding Hamiltonians based on maximally localized Wannier functions to compute the transport properties of the devices. These simulations provide for the first time estimates on the upper limits for the electron and hole mobilities in the Takagis approximation, including spin–orbit and multi-valley effects, and demonstrate that ultra-scaled devices in the sub-10-nm scale show a performance that is compliant with industry requirements.
Nature Communications | 2014
Marco Gibertini; Giovanni Pizzi; Nicola Marzari
Unprecedented and fascinating phenomena have been recently observed at oxide interfaces between centrosymmetric cubic materials, where polar discontinuities can give rise to polarization charges and electric fields that drive a metal-insulator transition and the appearance of a two-dimensional electron gas. Lower-dimensional analogues are possible, and honeycomb lattices offer a fertile playground, thanks to their versatility and the extensive ongoing experimental efforts in graphene and related materials. Here we suggest different realistic pathways to engineer polar discontinuities in honeycomb lattices and support these suggestions with extensive first-principles calculations. Several approaches are discussed, based on (i) nanoribbons, where a polar discontinuity against the vacuum emerges, and (ii) functionalizations, where covalent ligands are used to engineer polar discontinuities by selective or total functionalization of the parent systems. All the cases considered have the potential to deliver innovative applications in ultra-thin and flexible solar-energy devices and in micro- and nano-electronics.
Journal of Cheminformatics | 2017
Andrius Merkys; Nicolas Mounet; Andrea Cepellotti; Nicola Marzari; Saulius Gražulis; Giovanni Pizzi
In order to make results of computational scientific research findable, accessible, interoperable and re-usable, it is necessary to decorate them with standardised metadata. However, there are a number of technical and practical challenges that make this process difficult to achieve in practice. Here the implementation of a protocol is presented to tag crystal structures with their computed properties, without the need of human intervention to curate the data. This protocol leverages the capabilities of AiiDA, an open-source platform to manage and automate scientific computational workflows, and the TCOD, an open-access database storing computed materials properties using a well-defined and exhaustive ontology. Based on these, the complete procedure to deposit computed data in the TCOD database is automated. All relevant metadata are extracted from the full provenance information that AiiDA tracks and stores automatically while managing the calculations. Such a protocol also enables reproducibility of scientific data in the field of computational materials science. As a proof of concept, the AiiDA–TCOD interface is used to deposit 170 theoretical structures together with their computed properties and their full provenance graphs, consisting in over 4600 AiiDA nodes.
arXiv: Materials Science | 2014
Malgorzata Wierzbowska; Adam Dominiak; Giovanni Pizzi
The Seebeck coefficient in multilayer graphene is investigated within the density-functional theory, using the semiclassical Boltzmann equations and interpolating the bands in a maximally-localized Wannier functions basis set. We compare various graphene stackings (AA, AB and ABC) both free-standing and deposited on the 4H-SiC(0001) C-terminated substrate. We find that the presence of the SiC substrate can significantly affect the thermopower properties of graphene layers, depending on the stacking, providing a promising way to tailor efficient graphene-based devices.
Computer Physics Communications | 2014
Giovanni Pizzi; Dmitri Volja; Boris Kozinsky; Marco Fornari; Nicola Marzari
BoltzWann is a code to evaluate thermoelectric and electronic transport properties of extended systems with a maximally-localized Wannier function basis set. The semiclassical Boltzmann transport equations for the homogeneous infinite system are solved in the constant relaxation-time approximation and band energies and band derivatives are obtained via Wannier interpolations. Thanks to the exponential localization of the Wannier functions obtained, very high accuracy in the Brillouin zone integrals can be achieved with very moderate computational costs. Moreover, the analytical expression for the band derivatives in the Wannier basis resolves any issues that may occur when evaluating derivatives near band crossings. We present here an updated version of the BoltzWann code, which is now fully integrated within Wannier90 version 2.0, with minor bug fixes and the possibility to study also two-dimensional systems.
Computer Physics Communications | 2014
Arash A. Mostofi; Jonathan R. Yates; Giovanni Pizzi; Young-Su Lee; Ivo Souza; David Vanderbilt; Nicola Marzari
Mrs Bulletin | 2018
Giovanni Pizzi; Atsushi Togo; Boris Kozinsky
Archive | 2016
Marco Gibertini; Giovanni Pizzi; Nicola Marzari