Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Poggi is active.

Publication


Featured researches published by Giovanni Poggi.


IEEE Transactions on Geoscience and Remote Sensing | 2005

Supervised segmentation of remote sensing images based on a tree-structured MRF model

Giovanni Poggi; Giuseppe Scarpa; Josiane Zerubia

Most remote sensing images exhibit a clear hierarchical structure which can be taken into account by defining a suitable model for the unknown segmentation map. To this end, one can resort to the tree-structured Markov random field (MRF) model, which describes a K-ary field by means of a sequence of binary MRFs, each one corresponding to a node in the tree. Here we propose to use the tree-structured MRF model for supervised segmentation. The prior knowledge on the number of classes and their statistical features allows us to generalize the model so that the binary MRFs associated with the nodes can be adapted freely, together with their local parameters, to better fit the data. In addition, it allows us to define a suitable likelihood term to be coupled with the TS-MRF prior so as to obtain a precise global model of the image. Given the complete model, a recursive supervised segmentation algorithm is easily defined. Experiments on a test SPOT image prove the superior performance of the proposed algorithm with respect to other comparable MRF-based or variational algorithms.


IEEE Transactions on Geoscience and Remote Sensing | 2009

Hierarchical Texture-Based Segmentation of Multiresolution Remote-Sensing Images

Raffaele Gaetano; Giuseppe Scarpa; Giovanni Poggi

In this paper, we propose a new algorithm for the segmentation of multiresolution remote-sensing images, which fits into the general split-and-merge paradigm. The splitting phase singles out clusters of connected regions that share the same spatial and spectral characteristics. These clusters are then regarded as atomic elements of more complex structures, particularly textures, that are gradually retrieved during the merging phase. The whole process is based on a recently developed hierarchical model of the image, which accurately describes its textural properties. In order to reduce the computational burden and preserve contours at the highest spatial definition, the algorithm works on the high-resolution panchromatic data first, using low-resolution full spectral information only at a later stage to refine the segmentation. It is completely unsupervised, with just a few parameters set at the beginning, and its final product is not a single segmentation map but rather a sequence of nested maps which provide a hierarchical description of the image, at various scales of observations. The first experimental results, obtained on a remote-sensing Ikonos image, are very encouraging and confirm the algorithm potential.


IEEE Transactions on Geoscience and Remote Sensing | 2014

Benchmarking Framework for SAR Despeckling

Gerardo Di Martino; Mariana Poderico; Giovanni Poggi; Daniele Riccio; Luisa Verdoliva

Objective performance assessment is a key enabling factor for the development of better and better image processing algorithms. In synthetic aperture radar (SAR) despeckling, however, the lack of speckle-free images precludes the use of reliable full-reference measures, leaving the comparison among competing techniques on shaky bases. In this paper, we propose a new framework for the objective (quantitative) assessment of SAR despeckling techniques, based on simulation of SAR images relevant to canonical scenes. Each image is generated using a complete SAR simulator that includes proper physical models for the sensed surface, the scattering, and the radar operational mode. Therefore, in the limits of the simulation models, the employed simulation procedure generates reliable and meaningful SAR images with controllable parameters. Through simulating multiple SAR images as different instances relevant to the same scene we can therefore obtain, a true multilook full-resolution SAR image, with an arbitrary number of looks, thus generating (by definition) the closest object to a clean reference image. Based on this concept, we build a full performance assessment framework by choosing a suitable set of canonical scenes and corresponding objective measures on the SAR images that consider speckle suppression and feature preservation. We test our framework by studying the performance of a representative set of actual despeckling algorithms; we verify that the quantitative indications given by numerical measures are always fully consistent with the rationale specific of each despeckling technique, strongly agrees with qualitative (expert) visual inspections, and provide insight into SAR despeckling approaches.


IEEE Signal Processing Magazine | 2014

Exploiting Patch Similarity for SAR Image Processing: The nonlocal paradigm

Charles-Alban Deledalle; Loïc Denis; Giovanni Poggi; Florence Tupin; Luisa Verdoliva

Most current synthetic aperture radar (SAR) systems offer high-resolution images featuring polarimetric, interferometric, multifrequency, multiangle, or multidate information. SAR images, however, suffer from strong fluctuations due to the speckle phenomenon inherent to coherent imagery. Hence, all derived parameters display strong signal-dependent variance, preventing the full exploitation of such a wealth of information. Even with the abundance of despeckling techniques proposed over the last three decades, there is still a pressing need for new methods that can handle this variety of SAR products and efficiently eliminate speckle without sacrificing the spatial resolution. Recently, patch-based filtering has emerged as a highly successful concept in image processing. By exploiting the redundancy between similar patches, it succeeds in suppressing most of the noise with good preservation of texture and thin structures. Extensions of patch-based methods to speckle reduction and joint exploitation of multichannel SAR images (interferometric, polarimetric, or PolInSAR data) have led to the best denoising performance in radar imaging to date. We give a comprehensive survey of patch-based nonlocal filtering of SAR images, focusing on the two main ingredients of the methods: measuring patch similarity and estimating the parameters of interest from a collection of similar patches.


IEEE Transactions on Image Processing | 1999

Compression of multispectral images by spectral classification and transform coding

Giacinto Gelli; Giovanni Poggi

This paper presents a new technique for the compression of multispectral images, which relies on the segmentation of the image into regions of approximately homogeneous land cover. The rationale behind this approach is that, within regions of the same land cover, the pixels have stationary statistics and are characterized by mostly linear dependency, contrary to what usually happens for unsegmented images. Therefore, by applying conventional transform coding techniques to homogeneous groups of pixels, the proposed algorithm is able to effectively exploit the statistical redundancy of the image, thereby improving the rate distortion performance. The proposed coding strategy consists of three main steps. First, each pixel is classified by vector quantizing its spectral response vector, so that both a reliable classification and a minimum distortion encoding of each vector are obtained. Then, the classification map is entropy encoded and sent as side information, Finally, the residual vectors are grouped according to their classes and undergo Karhunen-Loeve transforming in the spectral domain and discrete cosine transforming in the spatial domain. Numerical experiments on a six-band thematic mapper image show that the proposed technique outperforms the conventional transform coding technique by 1 to 2 dB at all rates of interest.


IEEE Transactions on Information Forensics and Security | 2014

A Bayesian-MRF Approach for PRNU-Based Image Forgery Detection

Giovanni Chierchia; Giovanni Poggi; Carlo Sansone; Luisa Verdoliva

Graphics editing programs of the last generation provide ever more powerful tools, which allow for the retouching of digital images leaving little or no traces of tampering. The reliable detection of image forgeries requires, therefore, a battery of complementary tools that exploit different image properties. Techniques based on the photo-response non-uniformity (PRNU) noise are among the most valuable such tools, since they do not detect the inserted object but rather the absence of the camera PRNU, a sort of camera fingerprint, dealing successfully with forgeries that elude most other detection strategies. In this paper, we propose a new approach to detect image forgeries using sensor pattern noise. Casting the problem in terms of Bayesian estimation, we use a suitable Markov random field prior to model the strong spatial dependences of the source, and take decisions jointly on the whole image rather than individually for each pixel. Modern convex optimization techniques are then adopted to achieve a globally optimal solution and the PRNU estimation is improved by resorting to nonlocal denoising. Large-scale experiments on simulated and real forgeries show that the proposed technique largely improves upon the current state of the art, and that it can be applied with success to a wide range of practical situations.


IEEE Transactions on Information Forensics and Security | 2015

Efficient Dense-Field Copy–Move Forgery Detection

Davide Cozzolino; Giovanni Poggi; Luisa Verdoliva

We propose a new algorithm for the accurate detection and localization of copy-move forgeries, based on rotation-invariant features computed densely on the image. Dense-field techniques proposed in the literature guarantee a superior performance with respect to their keypoint-based counterparts, at the price of a much higher processing time, mostly due to the feature matching phase. To overcome this limitation, we resort here to a fast approximate nearest-neighbor search algorithm, PatchMatch, especially suited for the computation of dense fields over images. We adapt the matching algorithm to deal efficiently with invariant features, so as to achieve higher robustness with respect to rotations and scale changes. Moreover, leveraging on the smoothness of the output field, we implement a simplified and reliable postprocessing procedure. The experimental analysis, conducted on databases available online, proves the proposed technique to be at least as accurate, generally more robust, and typically much faster than the state-of-the-art dense-field references.


IEEE Transactions on Information Forensics and Security | 2015

An Investigation of Local Descriptors for Biometric Spoofing Detection

Diego Gragnaniello; Giovanni Poggi; Carlo Sansone; Luisa Verdoliva

Biometric authentication systems are quite vulnerable to sophisticated spoofing attacks. To keep a good level of security, reliable spoofing detection tools are necessary, preferably implemented as software modules. The research in this field is very active, with local descriptors, based on the analysis of microtextural features, gaining more and more popularity, because of their excellent performance and flexibility. This paper aims at assessing the potential of these descriptors for the liveness detection task in authentication systems based on various biometric traits: fingerprint, iris, and face. Besides compact descriptors based on the independent quantization of features, already considered for some liveness detection tasks, we will study promising descriptors based on the joint quantization of rich local features. The experimental analysis, conducted on publicly available data sets and in fully reproducible modality, confirms the potential of these tools for biometric applications, and points out possible lines of development toward further improvements.


IEEE Transactions on Image Processing | 1998

Kronecker-product gain-shape vector quantization for multispectral and hyperspectral image coding

Gerardo R. Canta; Giovanni Poggi

This paper proposes a new vector quantization based (VQ-based) technique for very low bit rate encoding of multispectral images. We rely on the assumption that the shape of a generic spatial block does not change significantly from band to band, as is the case for high spectral-resolution imagery. In such a hypothesis, it is possible to accurately quantize a three-dimensional (3-D) block-composed of homologous two-dimensional (2-D) blocks drawn from several bands-as the Kronecker-product of a spatial-shape codevector and a spectral-gain codevector, with significant computation saving with respect to straight VQ. An even higher complexity reduction is obtained by representing each 3-D block in its minimum-square-error Kronecker-product form and by quantizing the component shape and gain vectors. For the block sizes considered, this encoding strategy is over 100 times more computationally efficient than unconstrained VQ, and over ten times more computationally efficient than direct gain-shape VQ. The proposed technique is obviously suboptimal with respect to VQ, but the huge complexity reduction allows one to use much larger blocks than usual and to better exploit both the statistical and psychovisual redundancy of the image. Numerical experiments show fully satisfactory results whenever the shape-invariance hypothesis turns out to be accurate enough, as in the case of hyperspectral images. In particular, for a given level of complexity and image quality, the compression ratio is up to five times larger than that provided by ordinary VQ, and also larger than that provided by other techniques specifically designed for multispectral image coding.


IEEE Geoscience and Remote Sensing Letters | 2014

Fast Adaptive Nonlocal SAR Despeckling

Davide Cozzolino; Sara Parrilli; Giuseppe Scarpa; Giovanni Poggi; Luisa Verdoliva

Despeckling techniques based on the nonlocal approach provide an excellent performance, but exhibit also a remarkable complexity, unsuited to time-critical applications. In this letter, we propose a fast nonlocal despeckling filter. Starting from the recent SAR-BM3D algorithm, we propose to use a variable-size search area driven by the activity level of each patch, and a probabilistic early termination approach that exploits speckle statistics in order to speed up block matching. Finally, the use of look-up tables helps in further reducing the processing costs. The technique proposed conjugates excellent performance and low complexity, as demonstrated on both simulated and real-world SAR images and on a dedicated SAR despeckling benchmark.

Collaboration


Dive into the Giovanni Poggi's collaboration.

Top Co-Authors

Avatar

Luisa Verdoliva

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Scarpa

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo Sansone

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Davide Cozzolino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Marco Cagnazzo

Institut Mines-Télécom

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Masi

Information Technology University

View shared research outputs
Top Co-Authors

Avatar

Diego Gragnaniello

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Francesco Marra

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge