Giovanni Settanni
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giovanni Settanni.
Bioinformatics | 2007
Michele Seeber; Marco Cecchini; Francesco Rao; Giovanni Settanni; Amedeo Caflisch
Wordom is a versatile program for manipulation of molecular dynamics trajectories and efficient analysis of simulations. Original tools in Wordom include a procedure to evaluate significance of sampling for principal component analysis as well as modules for clustering multiple conformations and evaluation of order parameters for folding and aggregation. The program was developed with special emphasis on user-friendliness, effortless addition of new modules and efficient handling of large sets of trajectories.
Journal of Molecular Biology | 2008
Svava K. Wetzel; Giovanni Settanni; Manca Kenig; H. Kaspar Binz; Andreas Plückthun
Full-consensus designed ankyrin repeat proteins were designed with one to six identical repeats flanked by capping repeats. These proteins express well in Escherichia coli as soluble monomers. Compared to our previously described designed ankyrin repeat protein library, randomized positions have now been fixed according to sequence statistics and structural considerations. Their stability increases with length and is even higher than that of library members, and those with more than three internal repeats are resistant to denaturation by boiling or guanidine hydrochloride. Full denaturation requires their heating in 5 M guanidine hydrochloride. The folding and unfolding kinetics of the proteins with up to three internal repeats were analyzed, as the other proteins could not be denatured. Folding is monophasic, with a rate that is nearly identical for all proteins ( approximately 400-800 s(-1)), indicating that essentially the same transition state must be crossed, possibly the folding of a single repeat. In contrast, the unfolding rate decreases by a factor of about 10(4) with increasing repeat number, directly reflecting thermodynamic stability in these extraordinarily slow denaturation rates. The number of unfolding phases also increases with repeat number. We analyzed the folding thermodynamics and kinetics both by classical two-state and three-state cooperative models and by an Ising-like model, where repeats are considered as two-state folding units that can be stabilized by interacting with their folded nearest neighbors. This Ising model globally describes both equilibrium and kinetic data very well and allows for a detailed explanation of the ankyrin repeat protein folding mechanism.
Chemistry & Biology | 2010
Nicolas Basse; Joel L. Kaar; Giovanni Settanni; Andreas C. Joerger; Trevor J. Rutherford; Alan R. Fersht
The p53 cancer mutation Y220C induces formation of a cavity on the proteins surface that can accommodate stabilizing small molecules. We combined fragment screening and molecular dynamics to assess the druggability of p53-Y220C and map ligand interaction sites within the mutational cavity. Elucidation of the binding mode of fragment hits by crystallography yielded a clear picture of how a drug might dock in the cavity. Simulations that solvate the protein with isopropanol found additional sites that extend the druggable surface. Moreover, structural observations and simulation revealed the dynamic landscape of the cavity, which improves our understanding of the impact of the mutation on p53 stability. This underpins the importance of considering flexibility of the cavity in screening for optimized ligands. Our findings provide a blueprint for the design of effective drugs that rescue p53-Y220C.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Fang Huang; Sridharan Rajagopalan; Giovanni Settanni; Richard J. Marsh; Daven A. Armoogum; Nick Nicolaou; Angus J. Bain; Eitan Lerner; Elisha Haas; Liming Ying; Alan R. Fersht
The tumor suppressor p53 is a member of the emerging class of proteins that have both folded and intrinsically disordered domains, which are a challenge to structural biology. Its N-terminal domain (NTD) is linked to a folded core domain, which has a disordered link to the folded tetramerization domain, which is followed by a disordered C-terminal domain. The quaternary structure of human p53 has been solved by a combination of NMR spectroscopy, electron microscopy, and small-angle X-ray scattering (SAXS), and the NTD ensemble structure has been solved by NMR and SAXS. The murine p53 is reported to have a different quaternary structure, with the N and C termini interacting. Here, we used single-molecule FRET (SM-FRET) and ensemble FRET to investigate the conformational dynamics of the NTD of p53 in isolation and in the context of tetrameric full-length p53 (flp53). Our results showed that the isolated NTD was extended in solution with a strong preference for residues 66–86 forming a polyproline II conformation. The NTD associated weakly with the DNA binding domain of p53, but not the C termini. We detected multiple conformations in flp53 that were likely to result from the interactions of NTD with the DNA binding domain of each monomeric p53. Overall, the SM-FRET results, in addition to corroborating the previous ensemble findings, enabled the identification of the existence of multiple conformations of p53, which are often averaged and neglected in conventional ensemble techniques. Our study exemplifies the usefulness of SM-FRET in exploring the dynamic landscape of multimeric proteins that contain regions of unstructured domains.
Biophysical Journal | 2010
David Serquera; Whasil Lee; Giovanni Settanni; Piotr E. Marszalek; Emanuele Paci; Laura S. Itzhaki
Ankryin repeat proteins comprise tandem arrays of a 33-residue, predominantly alpha-helical motif that stacks roughly linearly to produce elongated and superhelical structures. They function as scaffolds mediating a diverse range of protein-protein interactions, and some have been proposed to play a role in mechanical signal transduction processes in the cell. Here we use atomic force microscopy and molecular-dynamics simulations to investigate the natural 7-ankyrin repeat protein gankyrin. We find that gankyrin unfolds under force via multiple distinct pathways. The reactions do not proceed in a cooperative manner, nor do they always involve fully stepwise unfolding of one repeat at a time. The peeling away of half an ankyrin repeat, or one or more ankyrin repeats, occurs at low forces; however, intermediate species are formed that are resistant to high forces, and the simulations indicate that in some instances they are stabilized by nonnative interactions. The unfolding of individual ankyrin repeats generates a refolding force, a feature that may be more easily detected in these proteins than in globular proteins because the refolding of a repeat involves a short contraction distance and incurs a low entropic cost. We discuss the origins of the differences between the force- and chemical-induced unfolding pathways of ankyrin repeat proteins, as well as the differences between the mechanics of natural occurring ankyrin repeat proteins and those of designed consensus ankyin repeat and globular proteins.
Journal of Chemical Physics | 2005
Francesco Rao; Giovanni Settanni; Enrico Guarnera; Amedeo Caflisch
The assumption that similar structures have similar folding probabilities (p(fold)) leads naturally to a procedure to evaluate p(fold) for every snapshot saved along an equilibrium folding-unfolding trajectory of a structured peptide or protein. The procedure utilizes a structurally homogeneous clustering and does not require any additional simulation. It can be used to detect multiple folding pathways as shown for a three-stranded antiparallel beta-sheet peptide investigated by implicit solvent molecular dynamics simulations.
Biophysical Journal | 2008
Giovanni Settanni; Alan R. Fersht
We report high temperature molecular dynamics simulations of the unfolding of the TRPZ1 peptide using an explicit model for the solvent. The system has been simulated for a total of 6 μs with 100-ns minimal continuous stretches of trajectory. The populated states along the simulations are identified by monitoring multiple observables, probing both the structure and the flexibility of the conformations. Several unfolding and refolding transition pathways are sampled and analyzed. The unfolding process of the peptide occurs in two steps because of the accumulation of a metastable on-pathway intermediate state stabilized by two native backbone hydrogen bonds assisted by nonnative hydrophobic interactions between the tryptophan side chains. Analysis of the un/folding kinetics and classical commitment probability calculations on the conformations extracted from the transition pathways show that the rate-limiting step for unfolding is the disruption of the ordered native hydrophobic packing (Trp-zip motif) leading from the native to the intermediate state. But, the speed of the folding process is mainly determined by the transition from the completely unfolded state to the intermediate and specifically by the closure of the hairpin loop driven by formation of two native backbone hydrogen bonds and hydrophobic contacts between tryptophan residues. The temperature dependence of the unfolding time provides an estimate of the unfolding activation enthalpy that is in agreement with experiments. The unfolding time extrapolated to room temperature is in agreement with the experimental data as well, thus providing a further validation to the analysis reported here.
Journal of Molecular Biology | 2010
Svava K. Wetzel; Christina Ewald; Giovanni Settanni; Simon Jurt; Andreas Plückthun; Oliver Zerbe
We investigated the stability determinants and the unfolding characteristics of full-consensus designed ankyrin repeat proteins (DARPins) by NMR. Despite the repeating sequence motifs, the resonances could be fully assigned using (2)H,(15)N,(13)C triple-labeled proteins. To remove further ambiguities, we attached paramagnetic spin labels to either end of these elongated proteins, which attenuate the resonances of the spatially closest residues. Deuterium exchange experiments of DARPins with two and three internal repeats between N- and C-terminal capping repeats (NI(2)C, NI(3)C) and NI(3)C_Mut5, where the C-cap had been reengineered, indicate that the stability of the full-consensus ankyrin repeat proteins is strongly dependent on the coupling between repeats, as the stabilized cap decreases the exchange rate throughout the whole protein. Some amide protons require more than a year to exchange at 37 degrees C, highlighting the extraordinary stability of the proteins. Denaturant-induced unfolding, followed by deuterium exchange, chemical shift change, and heteronuclear nuclear Overhauser effects, is consistent with an Ising-type description of equilibrium folding for NI(3)C_Mut5, while for native-state deuterium exchange, we postulate local fluctuations to dominate exchange as unfolding events are too slow in these very stable proteins. The location of extraordinarily slowly exchanging protons indicates a very stable core structure in the DARPins that combines hydrophobic shielding with favorable electrostatic interactions. These investigations help the understanding of repeat protein architecture and the further design of DARPins for biomedical applications where high stability is required.
Journal of Chemical Physics | 2000
Ruxandra I. Dima; Giovanni Settanni; Cristian Micheletti; Jayanth R. Banavar; Amos Maritan
We discuss methods for the determination of the effective pairwise interactions between amino acids in globular proteins in order to be able to easily recognize the native state conformation of any protein sequence among a set of decoy structures. The first method entails the application of a numerical strategy to a training set of proteins that maximizes the native fold stability with respect to alternative structures. The extracted parameters are shown to be very reliable for identifying the native states of proteins (unrelated to those in the training set) among thousands of conformations. Folding transition temperatures are estimated for a few proteins for which reliable alternative structures have recently been generated. The only poor performers are proteins with stabilizing heme groups whose complexity cannot be captured by standard pairwise energy functionals. The key ingredient of this technique is the knowledge of viable decoys for each protein sequence in the training set. We then present a sec...
Biophysical Journal | 2002
Giovanni Settanni; Trinh Xuan Hoang; Cristian Micheletti; Amos Maritan
The relevance of various residue positions for the stability and the folding characteristics of the prion protein in its normal cellular form are investigated by using molecular dynamics simulations of models exploiting the topology of the native state. These models allow for reproducing the experimentally validated two-state behavior of the normal prion isoform. Highly significant correlations are found between the most topologically relevant sites in our analysis and the single point mutations known to be associated with the arousal of the genetic forms of prion disease. Insight into the conformational change is provided by comparing the folding process of cellular prion and doppel that share a similar native state topology: the folding pathways of the former can be grouped in two main classes according to which tertiary structure contacts are formed first enroute to the native state. For the latter a single class of pathways leads to the native state again through a two-state process. Our results are consistent and supportive of the recent experimental findings that doppel lacks the scrapie isoform and that such remarkably different behavior involves residues in the region containing the two beta-strands and the intervening helix.