Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Vallini is active.

Publication


Featured researches published by Giovanni Vallini.


Waste Management & Research | 1983

The biology of composting: A review

M. De Bertoldi; Giovanni Vallini; A. Pera

This paper analyses the more important aspects of this process with particular emphasis on the microbiological. Some attention is also given to hygienic and sanitary implications as well as considerations on plant design. Compost is also analysed in its agricultural role, in particular its effects on plant growth. Problems regarding the evaluation of biological maturity and phytotoxicity are also discussed.


Agriculture, Ecosystems & Environment | 1996

Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant ( Cichorium intybus)-soil system: a comparative study

M. M. Valdrighi; A. Pera; Monica Agnolucci; Stefania Frassinetti; Deborah Lunardi; Giovanni Vallini

The responses of chicory plants to amendments with natural and synthetic surface active substances, represented by either potassium humates from compost stabilised green waste or Tween 80, are reported from a pot trial. Results are evaluated in terms of plant biomass production and behaviour of soil microbial populations following different treatments. Amendments with humic acids stimulated vegetative growth of chicory. They also caused significative variations in the numbers of bacterial heterotrophs and autotrophic nitrifiers in the soil. The study suggests that the mechanism through which humic acids affect both plant and soil microbes may chiefly involve enhancement of cell membrane permeability to nutrients.


Science of The Total Environment | 2008

Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass

Paula Alvarenga; A.P. Gonçalves; R.M. Fernandes; A. de Varennes; Giovanni Vallini; Elizabeth Duarte; A.C. Cunha-Queda

A microcosm experiment was carried out to evaluate the effects of municipal solid waste compost (MSWC) or garden waste compost (GWC), and liming materials in the rehabilitation of a soil affected by mining activities, and to study the use of perennial ryegrass (Lolium perenne L.) for phystostabilization. The performance of the amendments was assessed by soil chemical parameters, total and bioavailable metals (Cu, Pb and Zn), soil enzymatic activities, and plant relative growth and mineral composition. In general, both composts corrected soil acidity and increased the total organic matter content of the soil, although with a better performance in the case of MSWC, especially when considering total N and available P and K levels in the amended soil. The application of both composts and liming materials led to a decrease in the mobile fractions of Cu, Pb and Zn, but mobilisable fractions of Cu and Zn increased with MSWC application. Plant biomass increased more than three times in the presence of 50 Mg MSWC ha(-1) and with the combined use of 25 or 50 Mg MSWC ha(-1) and CaO, but no significant differences were observed when GWC was applied. Plant tissue analysis showed that the treatments did not significantly reduce Cu, Pb and Zn uptake by the plant. Dehydrogenase, and the enzymes related to the N-cycle, urease and protease, had increased activities with increasing MSWC application rate. Conversely, the enzymatic activities of both enzymes related to the C-cycle, cellulase and beta-glucosidase, were only positively affected by GWC application, a compost obtained from raw materials rich in C. Principal component analyses evidenced this clear separation between the effect of MSWC on soil enzymes related to the N-cycle and of GWC on soil enzymes related to the C-cycle. This study indicates that MSWC (50 Mg ha(-1), limed or unlimed) can be used successfully in the remediation of a highly acidic metal-contaminated soil, allowing the establishment of perennial ryegrass.


Proteomics | 2009

Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms.

Silvia Farinati; Giovanni DalCorso; Elisa Bona; Michela Corbella; Silvia Lampis; Daniela Cecconi; Rita Polati; Graziella Berta; Giovanni Vallini; Antonella Furini

Arabidopsis halleri has the rare ability to colonize heavy metal‐polluted sites and is an emerging model for research on adaptation and metal hyperaccumulation. The aim of this study was to analyze the effect of plant–microbe interaction on the accumulation of cadmium (Cd) and zinc (Zn) in shoots of an ecotype of A. halleri grown in heavy metal‐contaminated soil and to compare the shoot proteome of plants grown solely in the presence of Cd and Zn or in the presence of these two metals and the autochthonous soil rhizosphere‐derived microorganisms. The results of this analysis emphasized the role of plant–microbe interaction in shoot metal accumulation. Differences in protein expression pattern, identified by a proteomic approach involving 2‐DE and MS, indicated a general upregulation of photosynthesis‐related proteins in plants exposed to metals and to metals plus microorganisms, suggesting that metal accumulation in shoots is an energy‐demanding process. The analysis also showed that proteins involved in plant defense mechanisms were downregulated indicating that heavy metals accumulation in leaves supplies a protection system and highlights a cross‐talk between heavy metal signaling and defense signaling.


Chemosphere | 2008

Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin

Paula Alvarenga; Patrícia Palma; A.P. Gonçalves; N. Baião; R.M. Fernandes; A. de Varennes; Giovanni Vallini; Elizabeth Duarte; A.C. Cunha-Queda

A greenhouse pot experiment was conducted to evaluate the effect of sewage sludge (SS), of sugar beet sludge (SBS), or of a combination of both, in the remediation of a highly acidic (pH 3.6) metal-contaminated soil, affected by mining activities. The SS was applied at 100 and 200 Mg ha(-1) (dry weight basis), and the SBS at 7 Mg ha(-1). All pots were sown with Italian ryegrass (Lolium multiflorum Lam.). After 60 d of growth, shoot biomass was quantified and analysed for Cu, Pb and Zn. The pseudo-total and bioavailable contents of Cu, Pb and Zn and the enzymatic activities of beta-glucosidase, acid phosphatase, cellulase, protease and urease were determined in the soil mixtures. Two indirect acute bioassays with leachates from the soil (luminescent inhibition of Vibrio fischeri and Daphnia magna immobilization) were also used. The SS, in particular when in combination with SBS, corrected soil acidity, while increasing the total organic matter content and the cation exchange capacity. The application of SS led to a decrease in the level of effective bioavailable metals (extracted by 0.01 M CaCl(2), pH 5.7, without buffer), but caused an increase in their potential bioavailability (extracted by a solution of 0.5M NH(4)CH(3)COO, 0.5 M CH(3)COOH and 0.01 M EDTA, pH 4.7). Plant biomass increased more than 10 times in the presence of 100 Mg SS ha(-1), and more than five times with the combined use of 100 Mg SS ha(-1) and SBS, but a considerable phytotoxic effect was observed for the application rate of 200 Mg SS ha(-1). Copper, Pb and Zn concentrations in the shoots of L. multiflorum decreased significantly when using 100 Mg SS ha(-1) or SBS. The activities of beta-glucosidase, urease and protease increased with increasing SS applications rates, but cellulase had a reduced activity when using 200 Mg ha(-1)SS. Both amendments were able to suppress soil toxicity to levels that did not affect D. magna, but increased the soil leachate toxicity towards V. fischeri, especially with the application of 200 Mg SS ha(-1). This study showed that for this type of mine soils, and when using SS of similar composition, the maximum SS application rate should be 100 Mg ha(-1), and that liming the SS amended soil with SBS did not contribute to a further improvement in soil quality.


Water Research | 2010

Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon

Lorenzo Bertin; Silvia Lampis; Daniela Todaro; Alberto Scoma; Giovanni Vallini; Leonardo Marchetti; Mauro Majone; Fabio Fava

Four identically configured anaerobic packed bed biofilm reactors were developed and employed in the continuous acidogenic digestion of olive mill wastewaters to produce volatile fatty acids (VFAs), which can be exploited in the biotechnological production of polyhydroxyalkanoates. Ceramic porous cubes or granular activated carbon were used as biofilm supports. Aside packing material, the role of temperature and organic loading rate (OLR) on VFA production yield and mixture composition were also studied. The process was monitored through a chemical, microbiological and molecular biology integrated procedure. The highest wastewater acidification yield was achieved with the ceramic-based technology at 25 degrees C, with an inlet COD and an OLR of about 17 g/L and 13 g/L/day, respectively. Under these conditions, about the 66% of the influent COD (not including its VFA content) was converted into VFAs, whose final amount represented more than 82% of the influent COD. In particular, acetic, propionic and butyric acids were the main VFAs by composing the 55.7, 21.5 and 14.4%, respectively, of the whole VFA mixture. Importantly, the relative concentrations of acetate and propionate were affected by the OLR parameter. The nature of the packing material remarkable influenced the process performances, by greatly affecting the biofilm bacterial community structure. In particular, ceramic cubes favoured the immobilization of Firmicutes of the genera Bacillus, Paenibacillus and Clostridium, which were probably involved in the VFA producing process.


International Biodeterioration & Biodegradation | 2001

Biodegradation of 4-(1-nonyl)phenol by axenic cultures of the yeast Candida aquaetextoris : identification of microbial breakdown products and proposal of a possible metabolic pathway

Giovanni Vallini; Stefania Frassinetti; Felicia D'Andrea; Giorgio Catelani; Monica Agnolucci

Candida aquaetextoris, a yeast recently described for its ability to use 4-(1-nonyl)phenol (pNP) as the sole carbon and energy source in aerobic conditions, has been studied in order to determine the degradation products deriving from the growth on such a compound which is of environmental concern because of its proved toxicity to several organisms. Two main metabolites, namely trans-4-hydroxy-cinnamic acid and 4-hydroxy-acetophenone (4-acetylphenol), have been identified through either TLC and NMR spectrometry analyses of liquid substrate from cultures of C. aquaetextoris grown on pNP, with 4-acetylphenol that accumulates without any further degradation. These findings suggest that C. aquaetextoris might metabolise pNP via terminal oxidation of the alkyl chain, followed by a β-oxidation pathway. On the basis of this evidence, a novel metabolic route for the microbial degradation of 4-(1-nonyl)phenol, at least in certain yeasts, is proposed.


Biodegradation | 1990

The survival of the pentachlorophenol degrading Rhodococcus chlorophenolicus PCP-1 and Flavobacterium sp. in natural soil

M. Briglia; E. L. Nurmiaho-Lassila; Giovanni Vallini; Mirja Salkinoja-Salonen

The survival of two different pentachlorophenol (PCP)-degrading bacteria were studied in natural soil. The PCP-degraders Rhodococcus chlorophenolicus and Flavobacterium sp., both able to mineralize PCP into CO2 and chloride in axenic culture, were tested for the capacity to survive and degrade PCP in natural soil. These bacteria were immobilized on polyurethane (PUR) foam and introduced into natural peaty soil to give about 109 cells g-1 of soil (dry weight). R. chlorophenolicus induced PCP-degrading activity in soil remained detectable for 200 days whether or not a carbon source was added (distillery waste or wood chips). Electron microscopic investigation performed almost a year after inoculation, revealed the presence of R. chlorophenolicus-like cells in the PUR foam particles. PCP-degrading activity of Flavobacterium sp. declined within 60 days of burial in the soil without enhancing the PCP removal. R. chlorophenolicus degraded PCP in soil at a mean rate of 3.7 mg of PCP day-1 kg-1 of soil, which corresponds to ca. 5×10-3 pg of PCP degraded per inoculated R. chlorophenolicus cell day-1. The solvent extractable organic chlorine contents of the soil decreased stoichiometrically (>95%) with that of PCP indicating that PCP was essentially mineralized.


Microbial Cell Factories | 2014

Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions

Silvia Lampis; Emanuele Zonaro; Cristina Bertolini; Paolo Bernardi; Clive S. Butler; Giovanni Vallini

BackgroundSelenite (SeO32−) oxyanion shows severe toxicity to biota. Different bacterial strains exist that are capable of reducing SeO32− to non-toxic elemental selenium (Se0), with the formation of Se nanoparticles (SeNPs). These SeNPs might be exploited for technological applications due to their physico-chemical and biological characteristics. The present paper discusses the reduction of selenite to SeNPs by a strain of Bacillus sp., SeITE01, isolated from the rhizosphere of the Se-hyperaccumulator legume Astragalus bisulcatus.ResultsUse of 16S rRNA and GyrB gene sequence analysis positioned SeITE01 phylogenetically close to B. mycoides. On agarized medium, this strain showed rhizoid growth whilst, in liquid cultures, it was capable of reducing 0.5 and 2.0 mM SeO32− within 12 and 24 hours, respectively. The resultant Se0 aggregated to form nanoparticles and the amount of Se0 measured was equivalent to the amount of selenium originally added as selenite to the growth medium. A delay of more than 24 hours was observed between the depletion of SeO32 and the detection of SeNPs. Nearly spherical-shaped SeNPs were mostly found in the extracellular environment whilst rarely in the cytoplasmic compartment. Size of SeNPs ranged from 50 to 400 nm in diameter, with dimensions greatly influenced by the incubation times. Different SeITE01 protein fractions were assayed for SeO32− reductase capability, revealing that enzymatic activity was mainly associated with the membrane fraction. Reduction of SeO32− was also detected in the supernatant of bacterial cultures upon NADH addition.ConclusionsThe selenite reducing bacterial strain SeITE01 was attributed to the species Bacillus mycoides on the basis of phenotypic and molecular traits. Under aerobic conditions, the formation of SeNPs were observed both extracellularly or intracellullarly. Possible mechanisms of Se0 precipitation and SeNPs assembly are suggested. SeO32− is proposed to be enzimatically reduced to Se0 through redox reactions by proteins released from bacterial cells. Sulfhydryl groups on peptides excreted outside the cells may also react directly with selenite. Furthermore, membrane reductases and the intracellular synthesis of low molecular weight thiols such as bacillithiols may also play a role in SeO32− reduction. Formation of SeNPs seems to be the result of an Ostwald ripening mechanism.


Chemosphere | 2013

Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons

Marco Andreolli; Silvia Lampis; Marika Poli; Gábor Gullner; Borbála Biró; Giovanni Vallini

Burkholderia fungorum DBT1 is a bacterial strain isolated from an oil refinery discharge and capable of transforming dibenzothiophene, phenanthrene, naphthalene, and fluorene. In order to evaluate the influence of a policyclic aromatic hydrocarbon (PAH)-transforming bacterial strain on the phytoremediation of organic contaminants, B. fungorum DBT1 was inoculated into hybrid poplar (Populus deltoides×Populus nigra). The poplar plants were grown for 18-wk with or without naphthalene, phenanthrene, fluorene and dibenzothiophene (488mgkg(-1) soil each) in non-sterile sand-peat substrate. Evidences were gained that B. fungorum DBT1 was present in high concentration in poplar root tissues (2.9-9.5×10(3)CFUg(-1)), while the strain was not detected in stem, leaves and rhizosphere. When poplar was planted in uncontaminated substrate, the infection caused negative effects on biomass index, leaves and stem dry weight, without showing however any disease symptoms. On the other hand, plants inoculated with the strain DBT1 resulted in better tolerance against the toxic effects of PAHs, in terms of root dry weight. Although the presence of plants acted as the main effective treatment for PAH dissipation (82-87%), the inoculum with DBT1 strain lead to the highest PAH abatement (up to 99%). In the present study, an environmental isolate with proper metabolic features was demonstrated to be possibly suitable as a poplar endophyte for improving microbe-assisted phytoremediation in PAH contaminated matrices.

Collaboration


Dive into the Giovanni Vallini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Pera

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth Duarte

Instituto Superior de Agronomia

View shared research outputs
Top Co-Authors

Avatar

F. Cecchi

Ca' Foscari University of Venice

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paula Alvarenga

Instituto Politécnico de Beja

View shared research outputs
Top Co-Authors

Avatar

Mauro Majone

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Paolo Pavan

Ca' Foscari University of Venice

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge