Giovanni Volpe
Bilkent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giovanni Volpe.
Nature Nanotechnology | 2013
Onofrio M. Maragò; Philip H. Jones; Pietro G. Gucciardi; Giovanni Volpe; A. C. Ferrari
Optical trapping and manipulation of micrometre-sized particles was first reported in 1970. Since then, it has been successfully implemented in two size ranges: the subnanometre scale, where light-matter mechanical coupling enables cooling of atoms, ions and molecules, and the micrometre scale, where the momentum transfer resulting from light scattering allows manipulation of microscopic objects such as cells. But it has been difficult to apply these techniques to the intermediate - nanoscale - range that includes structures such as quantum dots, nanowires, nanotubes, graphene and two-dimensional crystals, all of crucial importance for nanomaterials-based applications. Recently, however, several new approaches have been developed and demonstrated for trapping plasmonic nanoparticles, semiconductor nanowires and carbon nanostructures. Here we review the state-of-the-art in optical trapping at the nanoscale, with an emphasis on some of the most promising advances, such as controlled manipulation and assembly of individual and multiple nanostructures, force measurement with femtonewton resolution, and biosensors.
Soft Matter | 2011
Giovanni Volpe; Ivo Buttinoni; Dominik Vogt; Hans-Jürgen Kümmerer; Clemens Bechinger
Tiny self-propelled swimmers capable of autonomous navigation through complex environments provide appealing opportunities for localization, pick-up and delivery of microscopic and nanoscopic objects. Inspired by motile cells and bacteria, man-made microswimmers have been created and their motion in homogeneous environments has been studied. As a first step towards more realistic conditions under which such microswimmers will be employed, here we study, experimentally and with numerical simulations, their behavior in patterned surroundings that present complex spatial features where frequent encounters with obstacles become important. To study the microswimmers as a function of their swimming behavior, we develop a novel species of microswimmers whose active motion is due to the local demixing of a critical binary liquid mixture and can be easily tuned by illumination. We show that, when microswimmers are confined to a single pore whose diameter is comparable with their swimming length, the probability of finding them at the confinement walls significantly increases compared to Brownian particles. Furthermore, in the presence of an array of periodically arranged obstacles, microswimmers can steer even perpendicularly to an applied force. Since such behavior is very sensitive to the details of their specific swimming style, it can be employed to develop advanced sorting, classification and dialysis techniques.
Physical Review Letters | 2013
Felix Kümmel; Borge ten Hagen; Raphael Wittkowski; Ivo Buttinoni; Ralf Eichhorn; Giovanni Volpe; Hartmut Löwen; Clemens Bechinger
Micron-sized self-propelled (active) particles can be considered as model systems for characterizing more complex biological organisms like swimming bacteria or motile cells. We produce asymmetric microswimmers by soft lithography and study their circular motion on a substrate and near channel boundaries. Our experimental observations are in full agreement with a theory of Brownian dynamics for asymmetric self-propelled particles, which couples their translational and orientational motion.
Optics Express | 2005
Caitriona M. Creely; Giovanni Volpe; Gajendra P. Singh; Marta Soler; Dmitri Petrov
Raman imaging can yield spatially resolved biochemical information from living cells. To date there have been no Raman images published of cells in suspension because of the problem of immobilizing them suitably to acquire space-resolved spectra. In this paper in order to overcome this problem the use of holographic optical tweezers is proposed and implemented, and data is shown for spatially resolved Raman spectroscopy of a live cell in suspension.
Optics Express | 2011
Giorgio Volpe; Giovanni Volpe; Romain Quidant
Plasmonic nanostructures offer a great potential to enhance light-matter interaction at the nanometer scale. The response upon illumination at a given wavelength and polarization is governed by the characteristic lengths associated to the shape and size of the nanostructure. Here, we propose the use of engineered fractal plasmonic structures to extend the degrees of freedom and the parameters available for their design. In particular, we focus on a paradigmatic fractal geometry, namely the Sierpinski carpet. We explore the possibility of using it to achieve a controlled broadband spectral response by controlling the degree of its fractal complexity. Furthermore, we investigate some other arising properties, such as subdiffraction limited focusing and its potential use for optical trapping of nano-objects. An attractive advantage of the focusing over more standard geometries, such as gap antennas, is that it occurs away from the metal surface (≈ 80 nm) at the center of the nanostructure, leaving an open space accessible to objects for enhanced light-matter interaction.
Physical Review Letters | 2010
Giovanni Volpe; Laurent Helden; Thomas Brettschneider; Jan Wehr; Clemens Bechinger
We demonstrate how the ineluctable presence of thermal noise alters the measurement of forces acting on microscopic and nanoscopic objects. We quantify this effect exemplarily for a Brownian particle near a wall subjected to gravitational and electrostatic forces. Our results demonstrate that the force-measurement process is prone to artifacts if the noise is not correctly taken into account.
Physical Review E | 2007
Giorgio Volpe; Giovanni Volpe; Dmitri Petrov
The photonic force microscope (PFM) is an opto-mechanical technique that uses an optically trapped probe to measure forces in the range of pico to femto Newton. For a correct use of the PFM, the force field has to be homogeneous on the scale of the Brownian motion of the trapped probe. This condition implicates that the force field must be conservative, excluding the possibility of a rotational component. However, there are cases where these assumptions are not fulfilled. Here, we show how to expand the PFM technique in order to deal with these cases. We introduce the theory of this enhanced PFM and we propose a concrete analysis workflow to reconstruct the force field from the experimental time series of the probe position. Furthermore, we experimentally verify some particularly important cases, namely, the case of a conservative and of a rotational force field.
EPL | 2009
Giuseppe Pesce; Giorgio Volpe; Anna Chiara De Luca; Giulia Rusciano; Giovanni Volpe
The forces acting on an optically trapped particle are usually assumed to be conservative. However, the presence of a non-conservative component has recently been demonstrated. Here, we propose a technique that permits one to quantify the contribution of such a non-conservative component. This is an extension of a standard calibration technique for optical tweezers and, therefore, can easily become a standard test to verify the conservative optical force assumption. Using this technique, we have analyzed optically trapped particles of different size under different trapping conditions. We conclude that the non-conservative effects are effectively negligible and do not affect the standard calibration procedure, unless for extremely low-power trapping, far away from the trapping regimes usually used in experiments.
Human Brain Mapping | 2015
Joana B. Pereira; Dag Aarsland; Cedric E. Ginestet; Alexander V. Lebedev; Lars-Olof Wahlund; Andrew Simmons; Giovanni Volpe; Eric Westman
The aim of this study was to assess whether mild cognitive impairment (MCI) is associated with disruption in large‐scale structural networks in newly diagnosed, drug‐naïve patients with Parkinsons disease (PD). Graph theoretical analyses were applied to 3T MRI data from 123 PD patients and 56 controls from the Parkinsons progression markers initiative (PPMI). Thirty‐three patients were classified as having Parkinsons disease with mild cognitive impairment (PD‐MCI) using the Movement Disorders Society Task Force criteria, while the remaining 90 PD patients were classified as cognitively normal (PD‐CN). Global measures (clustering coefficient, characteristic path length, global efficiency, small‐worldness) and regional measures (regional clustering coefficient, regional efficiency, hubs) were assessed in the structural networks that were constructed based on cortical thickness and subcortical volume data. PD‐MCI patients showed a marked reduction in the average correlation strength between cortical and subcortical regions compared with controls. These patients had a larger characteristic path length and reduced global efficiency in addition to a lower regional efficiency in frontal and parietal regions compared with PD‐CN patients and controls. A reorganization of the highly connected regions in the network was observed in both groups of patients. This study shows that the earliest stages of cognitive decline in PD are associated with a disruption in the large‐scale coordination of the brain network and with a decrease of the efficiency of parallel information processing. These changes are likely to signal further cognitive decline and provide support to the role of aberrant network topology in cognitive impairment in patients with early PD. Hum Brain Mapp 36:2980–2995, 2015.
Journal of Applied Physics | 2007
Giovanni Volpe; Gregory Kozyreff; Dmitri Petrov
An optically trapped particle is an extremely sensitive probe for the measurement of pico- and femto-Newton forces between the particle and its environment in microscopic systems (photonic force microscopy). A typical setup comprises an optical trap, which holds the probe, and a position sensing system, which uses the scattering of a beam illuminating the probe. Usually the position is accurately determined by measuring the deflection of the forward-scattered light transmitted through the probe. However, geometrical constraints may prevent access to this side of the trap, forcing one to make use of the backscattered light instead. A theory is presented together with numerical results that describes the use of the backscattered light for position detection. With a Mie–Debye approach, we compute the total (incident plus scattered) field and follow its evolution as it is collected by the condenser lenses and projected onto the position detectors and the responses of position sensitive detectors and quadrant ...