Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Zito is active.

Publication


Featured researches published by Giovanni Zito.


PLOS ONE | 2008

In vitro identification and characterization of CD133pos cancer stem-like cells in anaplastic thyroid carcinoma cell lines

Giovanni Zito; Pierina Richiusa; Alessandra Bommarito; Elvira Carissimi; Leonardo Russo; Antonina Coppola; Monica Zerilli; Vito Rodolico; Angela Criscimanna; Marco Calogero Amato; Giuseppe Pizzolanti; Aldo Galluzzo; Carla Giordano

Background Recent publications suggest that neoplastic initiation and growth are dependent on a small subset of cells, termed cancer stem cells (CSCs). Anaplastic Thyroid Carcinoma (ATC) is a very aggressive solid tumor with poor prognosis, characterized by high dedifferentiation. The existence of CSCs might account for the heterogeneity of ATC lesions. CD133 has been identified as a stem cell marker for normal and cancerous tissues, although its biological function remains unknown. Methodology/Principal Findings ATC cell lines ARO, KAT-4, KAT-18 and FRO were analyzed for CD133 expression. Flow cytometry showed CD133pos cells only in ARO and KAT-4 (64±9% and 57±12%, respectively). These data were confirmed by qRT-PCR and immunocytochemistry. ARO and KAT-4 were also positive for fetal marker oncofetal fibronectin and negative for thyrocyte-specific differentiating markers thyroglobulin, thyroperoxidase and sodium/iodide symporter. Sorted ARO/CD133pos cells exhibited higher proliferation, self-renewal, colony-forming ability in comparison with ARO/CD133neg. Furthermore, ARO/CD133pos showed levels of thyroid transcription factor TTF-1 similar to the fetal thyroid cell line TAD-2, while the expression in ARO/CD133neg was negligible. The expression of the stem cell marker OCT-4 detected by RT-PCR and flow cytometry was markedly higher in ARO/CD133pos in comparison to ARO/CD133neg cells. The stem cell markers c-KIT and THY-1 were negative. Sensitivity to chemotherapy agents was investigated, showing remarkable resistance to chemotherapy-induced apoptosis in ARO/CD133pos when compared with ARO/CD133neg cells. Conclusions/Significance We describe CD133pos cells in ATC cell lines. ARO/CD133pos cells exhibit stem cell-like features - such as high proliferation, self-renewal ability, expression of OCT-4 - and are characterized by higher resistance to chemotherapy. The simultaneous positivity for thyroid specific factor TTF-1 and onfFN suggest they might represent putative thyroid cancer stem-like cells. Our in vitro findings might provide new insights for novel therapeutic approaches.


Modern Pathology | 2010

BRAF(V600E) mutation influences hypoxia-inducible factor-1alpha expression levels in papillary thyroid cancer.

Monica Zerilli; Giovanni Zito; Anna Martorana; Maria Pitrone; Daniela Cabibi; Francesco Cappello; Carla Giordano; Vito Rodolico

Hypoxia-inducible factor-1α is found frequently overexpressed in solid tumors cells, exerting an important role in angiogenesis, glucose metabolism, cell proliferation, survival and invasion. In thyroid carcinomas, hypoxia-inducible factor-1α expression was found increased in differentiated, poorly differentiated, medullary and anaplastic variants. Hypoxia represents the principal stimulus responsible for hypoxia-inducible factor-1α induction. Other nonhypoxic stimuli increase hypoxia-inducible factor-1α synthesis through the activation of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways in a cell-type-specific manner. We have previously shown the role of BRAFV600E mutation in papillary thyroid cancer cells as a factor that facilitates tumor cell growth and progression. In this study, we tested the hypothesis that BRAFV600E mutation influences hypoxia-inducible factor-1α expression in papillary thyroid carcinoma cells. We analyzed 27 papillary thyroid carcinomas, 13 of which presented BRAFV600E mutation. In tumor tissues, immunoreactivity for hypoxia-inducible factor-1α was detected in the majority of analyzed BRAFV600E mutated cases. Transcriptional analyses revealed elevated hypoxia-inducible factor-1α levels with significant differences between wild-type and mutated group. A BRAF wild-type papillary thyroid carcinoma cell line and a BRAFV600E mutated papillary thyroid carcinoma cell line were selected to study the effects of BRAF mutation on hypoxia-inducible factor-1α expression in vitro. Knockdown of mutant BRAFV600E or both the wild type and the BRAFV600E by RNA interference induced a significant reduction of hypoxia-inducible factor-1α expression at mRNA and protein levels. Pharmacological inhibition of BRAF significantly reduces hypoxia-inducible factor-1α expression levels in papillary thyroid carcinoma cell line harboring BRAFV600E mutation. Our results suggest that hypoxia-inducible factor-1α is expressed in papillary thyroid carcinomas and is regulated not only by hypoxia but also by BRAFV600E-mediated signaling pathway.


Thyroid | 2013

Multiple pluripotent stem cell markers in human anaplastic thyroid cancer: the putative upstream role of SOX2.

Valeria Carina; Giovanni Zito; Giuseppe Pizzolanti; Pierina Richiusa; Angela Criscimanna; Vito Rodolico; Laura Tomasello; Maria Pitrone; Walter Arancio; Carla Giordano

BACKGROUND Anaplastic thyroid carcinoma (ATC) is a rare and aggressive endocrine tumor with highly undifferentiated morphology. It has been suggested that cancer stem cells (CSCs) might play a central role in ATC. The objectives of this study were (i) to characterize CSCs from ex vivo ATC specimens by investigating the expression of several pluripotent stem cell markers, and (ii) to evaluate in vitro drug resistance modifications after specific CSC transcription factor switch-off. METHODS In ex vivo experiments, eight formalin-fixed, paraffin-embedded ATC specimens were analyzed by reverse-transcription and real-time quantitative PCR and immunohistochemistry. In in vitro experiments using ATC SW1736 cells, the expression levels of OCT-4, NANOG, and ABCG2 and the sensitivity to either cisplatin or doxorubicin were evaluated after silencing. RESULTS OCT-4, KLF4, and SOX2 transcription factors and C-KIT and THY-1 stem surface antigens showed variable up-regulation in all ATC cases. The SW1736 cell line was characterized by a high percentage of stem population (10.4±2.1% of cells were aldehyde dehydrogenase positive) and high expression of several CSC markers (SOX2, OCT4, NANOG, C-MYC, and SSEA4). SOX2 silencing down-regulated OCT-4, NANOG, and ABCG2. SOX2 silencing sensitized SW1736 cells, causing a significant cell death increase (1.8-fold) in comparison to control cells with 10 μM cisplatin (93.9±3.4% vs. 52.6±9.4%, p<0.01) and 2.7 fold with 0.5 μM doxorubicin (45.8±9.9% vs. 17.1±3.4% p<0.01). ABCG2 silencing caused increased cell death with both cisplatin (74.9±1.4%) and doxorubicin treatment (74.1±0.1%) vs. no-target-treated cells (respectively, 45.8±1.0% and 48.6±1.0%, p<0.001). CONCLUSIONS The characterization of CSCs in ATC through the analysis of multiple pluripotent stem cell markers might be useful in identifying cells with a stem-like phenotype capable of resisting conventional chemotherapy. In addition, our data demonstrate that SOX2 switch-off through ABCG2 transporter down-regulation has a major role in overcoming CSC chemotherapy resistance.


Endocrine-related Cancer | 2011

BRAFV600E mutation, TIMP-1 upregulation, and NF-κB activation: closing the loop on the papillary thyroid cancer trilogy

Alessandra Bommarito; Pierina Richiusa; Elvira Carissimi; Giuseppe Pizzolanti; Vito Rodolico; Giovanni Zito; Angela Criscimanna; Francesco Di Blasi; Maria Pitrone; Monica Zerilli; Marco Calogero Amato; G Spinelli; Valeria Carina; Giuseppe Modica; M Adelfio Latteri; Aldo Galluzzo; Carla Giordano

BRAF(V600E) is the most common mutation found in papillary thyroid carcinoma (PTC). Tissue inhibitor of metalloproteinases (TIMP-1) and nuclear factor (NF)-κB have been shown to play an important role in thyroid cancer. In particular, TIMP-1 binds its receptor CD63 on cell surface membrane and activates Akt signaling pathway, which is eventually responsible for its anti-apoptotic activity. The aim of our study was to evaluate whether interplay among these three factors exists and exerts a functional role in PTCs. To this purpose, 56 PTC specimens were analyzed for BRAF(V600E) mutation, TIMP-1 expression, and NF-κB activation. We found that BRAF(V600E) mutation occurs selectively in PTC nodules and is associated with hyperactivation of NF-κB and upregulation of both TIMP-1 and its receptor CD63. To assess the functional relationship among these factors, we first silenced BRAF gene in BCPAP cells, harboring BRAF(V600E) mutation. We found that silencing causes a marked decrease in TIMP-1 expression and NF-κB binding activity, as well as decreased invasiveness. After treatment with specific inhibitors of MAPK pathway, we found that only sorafenib was able to increase IκB-α and reduce both TIMP-1 expression and Akt phosphorylation in BCPAP cells, indicating that BRAF(V600E) activates NF-κB and this pathway is MEK-independent. Taken together, our findings demonstrate that BRAF(V600E) causes upregulation of TIMP-1 via NF-κB. TIMP-1 binds then its surface receptor CD63, leading eventually to Akt activation, which in turn confers antiapoptotic behavior and promotion of cell invasion. The recognition of this functional trilogy provides insight on how BRAF(V600E) determines cancer initiation, progression, and invasiveness in PTC, also identifying new therapeutic targets for the treatment of highly aggressive forms.


Cell Transplantation | 2012

In vitro generation of pancreatic endocrine cells from human adult fibroblast-like limbal stem cells.

Angela Criscimanna; Giovanni Zito; Annalisa Taddeo; Pierina Richiusa; Maria Pitrone; Daniele Morreale; Gaetano Lodato; Giuseppe Pizzolanti; Roberto Citarrella; Aldo Galluzzo; Carla Giordano

Stem cells might provide unlimited supply of transplantable cells for β-cell replacement therapy in diabetes. The human limbus is a highly specialized region hosting a well-recognized population of epithelial stem cells, which sustain the continuous renewal of the cornea, and the recently identified stromal fibroblast-like stem cells (f-LSCs), with apparent broader plasticity. However, the lack of specific molecular markers for the identification of the multipotent limbal subpopulation has so far limited the investigation of their differentiation potential. In this study we show that the human limbus contains uncommitted cells that could be potentially harnessed for the treatment of diabetes. Fourteen limbal biopsies were obtained from patients undergoing surgery for ocular diseases not involving the conjunctiva or corneal surface. We identified a subpopulation of f-LSCs characterized by robust proliferative capacity, expressing several pluripotent stem cell markers and exhibiting self-renewal ability. We then demonstrated the potential of f-LSCs to differentiate in vitro into functional insulin-secreting cells by developing a four-step differentiation protocol that efficiently directed f-LSCs towards the pancreatic endocrine cell fate. The expression of specific endodermal, pancreatic, islet, and β-cell markers, as well as functional properties of f-LSC-derived insulin-producing cells, were evaluated during differentiation. With our stage-specific approach, up to 77% of f-LSCs eventually differentiated into cells expressing insulin (also assessed as C-peptide) and exhibited phenotypic features of mature β-cells, such as expression of critical transcription factors and presence of secretory granules. Although insulin content was about 160-fold lower than what observed in adult islets, differentiated cells processed ~98% of their proinsulin content, similar to mature β-cells. Moreover, they responded in vitro in a regulated manner to multiple secretory stimuli, including glucose. In conclusion, f-LSCs represent a possible relevant source of autologous, transplantable, insulin-producing cells that could be tested for the reversal of diabetes.


PLOS ONE | 2012

In vitro phenotypic, genomic and proteomic characterization of a cytokine-resistant murine β-TC3 cell line.

Antonina Coppola; Laura Tomasello; Giuseppe Pizzolanti; Ida Pucci-Minafra; Nadia Ninfa Albanese; Gianluca Di Cara; Patrizia Cancemi; Maria Pitrone; Alessandra Bommarito; Elvira Carissimi; Giovanni Zito; Angela Criscimanna; Aldo Galluzzo; Carla Giordano

Type 1 diabetes mellitus (T1DM) is caused by the selective destruction of insulin-producing β-cells. This process is mediated by cells of the immune system through release of nitric oxide, free radicals and pro-inflammatory cytokines, which induce a complex network of intracellular signalling cascades, eventually affecting the expression of genes involved in β-cell survival. The aim of our study was to investigate possible mechanisms of resistance to cytokine-induced β-cell death. To this purpose, we created a cytokine-resistant β-cell line (β-TC3R) by chronically treating the β-TC3 murine insulinoma cell line with IL-1β + IFN-γ. β-TC3R cells exhibited higher proliferation rate and resistance to cytokine-mediated cell death in comparison to the parental line. Interestingly, they maintained expression of β-cell specific markers, such as PDX1, NKX6.1, GLUT2 and insulin. The analysis of the secretory function showed that β-TC3R cells have impaired glucose-induced c-peptide release, which however was only moderately reduced after incubation with KCl and tolbutamide. Gene expression analysis showed that β-TC3R cells were characterized by downregulation of IL-1β and IFN-γ receptors and upregulation of SOCS3, the classical negative regulator of cytokines signaling. Comparative proteomic analysis showed specific upregulation of 35 proteins, mainly involved in cell death, stress response and folding. Among them, SUMO4, a negative feedback regulator in NF-kB and JAK/STAT signaling pathways, resulted hyper-expressed. Silencing of SUMO4 was able to restore sensitivity to cytokine-induced cell death in β-TC3R cells, suggesting it may play a key role in acquired cytokine resistance by blocking JAK/STAT and NF-kB lethal signaling. In conclusion, our study represents the first extensive proteomic characterization of a murine cytokine-resistant β-cell line, which might represent a useful tool for studying the mechanisms involved in resistance to cytokine-mediated β-cell death. This knowledge may be of potential benefit for patients with T1DM. In particular, SUMO4 could be used as a therapeutical target.


Immunology and Cell Biology | 2017

Imaging to study solid tumour origin and progression: lessons from research and clinical oncology

Stefania Raimondo; Giovanni Zito

Biomedical imaging in recent decades has clarified our understanding of normal and pathological cellular processes in vivo. In particular, this approach recently provided insights into processes occurring at a molecular or genetic level rather than at the anatomical level. The evolution of this discipline by engineering have led to its integration into biomedical research to (1) increase sensitivity and resolution imaging and to (2) improve tissue and cell specificity. Currently, imaging approaches are used in three different biomedical areas: (a) identification of cellular processes in physiological and disease state; (b) in vivo single‐cell imaging; and (c) identification of new prognostic and therapeutical strategies. In this review, we will focus on the state of art of biomedical imaging in cancer. Specifically, we will highlight the most important advances in imaging tools available for basic and translational cancer research, with a particular emphasis on solid tissue malignancies.


Journal of Pediatrics and Pediatric Medicine | 2018

Human exfoliated deciduous teeth and oral mucosa: promising applications in tissue regeneration

Marta Cristaldi; Rodolfo Mauceri; Laura Tomasello; Giuseppe Pizzolanti; Giovanni Zito; Riccardo Alessandro; Carla Giordano; Giuseppina Campisi; Oncological; Palermo; Medical Biotechnology; blockquote

In the last three decades, the constantly increasing need for therapies, efficiently preventing and/or treating human diseases, has raised the interest in Regenerative Medicine (RM). RM is based on employing mesenchymal stem cells (MSCs), that showed to have great proliferation, self-renewal and multi-lineage differentiation potential, in vitro as well as in vivo. The opportunity of an accessible, painless and low-cost reservoir of MSCs constitutes the first important step of a successful regenerative therapy to include in the current clinical practice. Oral cavity has recently demonstrated to contain different MSCs niches: dental pulp from permanent and deciduous teeth, periodontal ligament, dental follicle, apical papilla and mucosa. MSCs from dental pulp of deciduous teeth, naturally lost in pediatric age, and the oral mucosa have shown to be easily harvested and to have a promising regenerative potential. Thus, the aim of the paper is to review the potentialities of human exfoliated deciduous teeth stem cells (SHEDs) and oral mucosa stem cells (OMSCs) in RM, with the purpose of their use as accessible source of MSCs for the future of pediatric patient.


Scientific Reports | 2017

Retinoic Acid affects Lung Adenocarcinoma growth by inducing differentiation via GATA6 activation and EGFR and Wnt inhibition

Giovanni Zito; Flores Naselli; Laura Saieva; Stefania Raimondo; Giovanna Calabrese; Claudio Guzzardo; Stefano Forte; Christian Rolfo; Rosalba Parenti; Riccardo Alessandro

A fundamental task in cancer research aims at the identification of new pharmacological therapies that can affect tumor growth. Differentiation therapy might exploit this function not only for hematological diseases, such as acute promyelocytic leukemia (APML) but also for epithelial tumors, including lung cancer. Here we show that Retinoic Acid (RA) arrests in vitro and in vivo the growth of Tyrosine Kinase Inhibitors (TKI) resistant Non Small Cell Lung Cancer (NSCLC). In particular, we found that RA induces G0/G1 cell cycle arrest in TKI resistant NSCLC cells and activates terminal differentiation programs by modulating the expression of GATA6, a key transcription factor involved in the physiological differentiation of the distal lung. In addition, our results demonstrate that RA inhibits EGFR and Wnt signaling activation, two pathways involved in NSCLC progression. Furthermore, we uncovered a novel mechanism in NSCLC that shows how RA exerts its function; we found that RA-mediated GATA6 activation is necessary for EGFR and Wnt inhibition, thus leading to 1) increased differentiation and 2) loss of proliferation. All together, these findings prove that differentiation therapy might be feasible in TKI resistant NSCLCs, and shed light on new targets to define new pharmacological therapies.


Oncotarget | 2015

Citrus limon -derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death

Stefania Raimondo; Flores Naselli; Simona Fontana; Francesca Monteleone; Alessia Lo Dico; Laura Saieva; Giovanni Zito; Anna Flugy; Mauro Manno; Maria Antonietta Di Bella; Giacomo De Leo; Riccardo Alessandro

Collaboration


Dive into the Giovanni Zito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge