Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Girbe Buist is active.

Publication


Featured researches published by Girbe Buist.


Molecular Microbiology | 2008

LysM, a widely distributed protein motif for binding to (peptido)glycans

Girbe Buist; Anton Steen; Jan Kok; Oscar P. Kuipers

Bacteria retain certain proteins at their cell envelopes by attaching them in a non‐covalent manner to peptidoglycan, using specific protein domains, such as the prominent LysM (Lysin Motif) domain. More than 4000 (Pfam PF01476) proteins of both prokaryotes and eukaryotes have been found to contain one or more Lysin Motifs. Notably, this collection contains not only truly secreted proteins, but also (outer‐)membrane proteins, lipoproteins or proteins bound to the cell wall in a (non‐)covalent manner. The motif typically ranges in length from 44 to 65 amino acid residues and binds to various types of peptidoglycan and chitin, most likely recognizing the N‐acetylglucosamine moiety. Most bacterial LysM‐containing proteins are peptidoglycan hydrolases with various cleavage specificities. Binding of certain LysM proteins to cells of Gram‐positive bacteria has been shown to occur at specific sites, as binding elsewhere is hindered by the presence of other cell wall components such as lipoteichoic acids. Interestingly, LysM domains of certain plant kinases enable the plant to recognize its symbiotic bacteria or sense and induce resistance against fungi. This interaction is triggered by chitin‐like compounds that are secreted by the symbiotic bacteria or released from fungi, demonstrating an important sensing function of LysMs.


Molecular Genetics and Genomics | 1996

A general system for generating unlabelled gene replacements in bacterial chromosomes

Kees Leenhouts; Girbe Buist; A. Bolhuis; A. M. A. ten Berge; Jan A. K. W. Kiel; Igor Mierau; M. Dabrowska; G Venema; Jan Kok

Abstract A general system is described that facilitates gene replacements such that the recombinant strains are not labelled with antibiotic resistance genes. The method is based on the conditional replication of derivatives of the lactococcal plasmid pWV01, which lacks the repA gene encoding the replication initiation protein. Replacement vectors can be constructed in and isolated from gram-positive and gram-negative helper strains that provide RepA in trans. Cointegrate formation of the integration vectors with the chromosome of the target strain is selected by antibiotic resistance. Resolution of the cointegrate structure is identified in the second step of the procedure by the loss of the lacZ reporter gene present in the delivery vector. The second recombination event results either in gene replacement or in restoration of the original copy of the gene. As no antibiotic resistance marker is present in the genome of the mutant the system can be used to introduce multiple mutations in one strain. A feasibility study was performed using Lactococcus lactis and Bacillus subtilis as model organisms. The results indicate that the method should be applicable to any non-essential gene in numerous bacterial species.


Journal of Biological Chemistry | 2003

Cell Wall Attachment of a Widely Distributed Peptidoglycan Binding Domain Is Hindered by Cell Wall Constituents

Anton Steen; Girbe Buist; Kees Leenhouts; Mohamed El Khattabi; Froukje Grijpstra; Aldert Zomer; Gerard Venema; Oscar P. Kuipers; Jan Kok

The C-terminal region (cA) of the major autolysin AcmA of Lactococcus lactis contains three highly similar repeated regions of 45 amino acid residues (LysM domains), which are separated by nonhomologous sequences. The cA domain could be deleted without destroying the cell wall-hydrolyzing activity of the enzyme in vitro. This AcmA derivative was capable neither of binding to lactococcal cells nor of lysing these cells while separation of the producer cells was incomplete. The cA domain and a chimeric protein consisting of cA fused to the C terminus of MSA2, a malaria parasite surface antigen, bound to lactococcal cells specifically via cA. The fusion protein also bound to many other Gram-positive bacteria. By chemical treatment of purified cell walls of L. lactis and Bacillus subtilis, peptidoglycan was identified as the cell wall component interacting with cA. Immunofluorescence studies showed that binding is on specific locations on the surface of L. lactis, Enterococcus faecalis, Streptococcus thermophilus, B. subtilis, Lactobacillus sake, and Lactobacillus casei cells. Based on these studies, we propose that LysM-type repeats bind to peptidoglycan and that binding is hindered by other cell wall constituents, resulting in localized binding of AcmA. Lipoteichoic acid is a candidate hindering component. For L. lactis SK110, it is shown that lipoteichoic acids are not uniformly distributed over the cell surface and are mainly present at sites where no MSA2cA binding is observed.


Eurosurveillance | 2013

Carbapenemase-producing Enterobacteriaceae in Europe: A survey among national experts from 39 countries, February 2013

Corinna Glasner; Barbara Albiger; Girbe Buist; A. Tambić Andrašević; Rafael Cantón; Yehuda Carmeli; Alexander W. Friedrich; Christian G. Giske; Youri Glupczynski; Marek Gniadkowski; David M. Livermore; Patrice Nordmann; Laurent Poirel; Gian Maria Rossolini; Harald Seifert; Alkiviadis Vatopoulos; Timothy R. Walsh; Neil Woodford; Tjibbe Donker; Dominique L. Monnet; Hajo Grundmann

The spread of carbapenemase-producing Enterobacteriaceae (CPE) is a threat to healthcare delivery, although its extent differs substantially from country to country. In February 2013, national experts from 39 European countries were invited to self-assess the current epidemiological situation of CPE in their country. Information about national management of CPE was also reported. The results highlight the urgent need for a coordinated European effort on early diagnosis, active surveillance, and guidance on infection control measures.


Molecular Microbiology | 2004

Subcellular sites for bacterial protein export

Nathalie Campo; Harold Tjalsma; Girbe Buist; Dariusz Stepniak; Michel Meijer; Marten Veenhuis; Martin Westermann; Jörg P. Müller; Sierd Bron; Jan Kok; Oscar P. Kuipers; Jan D. H. Jongbloed

Most bacterial proteins destined to leave the cytoplasm are exported to extracellular compartments or imported into the cytoplasmic membrane via the highly conserved SecA‐YEG pathway. In the present studies, the subcellular distributions of core components of this pathway, SecA and SecY, and of the secretory protein pre‐AmyQ, were analysed using green fluorescent protein fusions, immunostaining and/or immunogold labelling techniques. It is shown that SecA, SecY and (pre‐)AmyQ are located at specific sites near and/or in the cytoplasmic membrane of Bacillus subtilis. The localization patterns of these proteins suggest that the Sec machinery is organized in spiral‐like structures along the cell, with most of the translocases organized in specific clusters along these structures. However, this localization appears to be independent of the helicoidal structures formed by the actin‐like cytoskeletal proteins, MreB or Mbl. Interestingly, the specific localization of SecA is dynamic, and depends on active translation. Moreover, reducing the phosphatidylglycerol phospholipids content in the bacterial membrane results in delocalization of SecA, suggesting the involvement of membrane phospholipids in the localization process. These data show for the first time that, in contrast to the recently reported uni‐ExPortal site in the coccoïd Streptococcus pyogenes, multiple sites dedicated to protein export are present in the cytoplasmic membrane of rod‐shaped B. subtilis.


Journal of Bacteriology | 2007

Time-Resolved Determination of the CcpA Regulon of Lactococcus lactis subsp. cremoris MG1363

Aldert Zomer; Girbe Buist; Rasmus Larsen; Jan Kok; Oscar P. Kuipers

Carbon catabolite control protein A (CcpA) is the main regulator involved in carbon catabolite repression in gram-positive bacteria. Time series gene expression analyses of Lactococcus lactis MG1363 and L. lactis MG1363DeltaccpA using DNA microarrays were used to define the CcpA regulon of L. lactis. Based on a comparison of the transcriptome data with putative CcpA binding motifs (cre sites) in promoter sequences in the genome of L. lactis, 82 direct targets of CcpA were predicted. The main differences in time-dependent expression of CcpA-regulated genes were differences between the exponential and transition growth phases. Large effects were observed for carbon and nitrogen metabolic genes in the exponential growth phase. Effects on nucleotide metabolism genes were observed primarily in the transition phase. Analysis of the positions of putative cre sites revealed that there is a link between either repression or activation and the location of the cre site within the promoter region. Activation was observed when putative cre sites were located upstream of the hexameric -35 sequence at an average position of -56.5 or further upstream with decrements of 10.5 bp. Repression was observed when the cre site was located in or downstream of putative -35 and -10 sequences. The highest level of repression was observed when the cre site was present at a defined side of the DNA helix relative to the canonical -10 sequence. Gel retardation experiments, Northern blotting, and enzyme assays showed that CcpA represses its own expression and activates the expression of the divergently oriented prolidase-encoding pepQ gene, which constitutes a link between regulation of carbon metabolism and regulation of nitrogen metabolism.


Applied and Environmental Microbiology | 2006

Novel Surface Display System for Proteins on Non-Genetically Modified Gram-Positive Bacteria

Tjibbe Bosma; Rolf Kanninga; Jolanda Neef; Sandrine Audouy; Maarten L. van Roosmalen; Anton Steen; Girbe Buist; Jan Kok; Oscar P. Kuipers; George T. Robillard; Kees Leenhouts

ABSTRACT A novel display system is described that allows highly efficient immobilization of heterologous proteins on bacterial surfaces in applications for which the use of genetically modified bacteria is less desirable. This system is based on nonliving and non-genetically modified gram-positive bacterial cells, designated gram-positive enhancer matrix (GEM) particles, which are used as substrates to bind externally added heterologous proteins by means of a high-affinity binding domain. This binding domain, the protein anchor (PA), was derived from the Lactococcus lactis peptidoglycan hydrolase AcmA. GEM particles were typically prepared from the innocuous bacterium L. lactis, and various parameters for the optimal preparation of GEM particles and binding of PA fusion proteins were determined. The versatility and flexibility of the display and delivery technology were demonstrated by investigating enzyme immobilization and nasal vaccine applications.


Proteomics | 2010

Profiling the surfacome of Staphylococcus aureus

Annette Dreisbach; Kristina Hempel; Girbe Buist; Michael Hecker; Doerte Becher; Jan Maarten van Dijl

Staphylococcus aureus is a widespread opportunistic pathogen that can cause a wide variety of life‐threatening diseases. Especially for the colonization of human tissues and the development of invasiveness, surface‐exposed proteins are of major importance. In the present studies, we optimized a proteolytic shaving approach to identify those surface‐exposed protein domains – the surfacome – of S. aureus that are accessible to extracellular bio‐macromolecules, for example in the host milieu. Subsequently, this approach was applied to define the surfacomes of four strains with different genetic backgrounds. This resulted in the identification of 96 different proteins. Surprisingly, the overlap between the surfacomes of the four different strains was below 10% and each strain displayed its own characteristic set of surface‐exposed proteins. The data were also evaluated at the peptide level and here we observed a similar phenomenon. From 190 unique peptides only five were commonly found in the four strains. Besides well known cell wall proteins, we also identified some essential proteins, several yet uncharacterized exported proteins and predicted intracellular proteins. These results show for the first time that the cell surface of different S. aureus strains is not only highly variable, but also that the displayed proteins are very heterogeneous.


Antimicrobial Agents and Chemotherapy | 2012

Guidelines for Reporting Novel mecA Gene Homologues

Teruyo Ito; Keiichi Hiramatsu; Alexander Tomasz; Hermínia de Lencastre; Vincent Perreten; Matthew T. G. Holden; David C. Coleman; Richard V. Goering; Philip M. Giffard; Robert Skov; Kunyan Zhang; Henrik Westh; Frances G. O'Brien; Fred C. Tenover; Duarte C. Oliveira; Susan Boyle-Vavra; Frédéric Laurent; Angela M. Kearns; Barry N. Kreiswirth; Kwan Soo Ko; Hajo Grundmann; Johanna U. Ericson Sollid; Joseph F. John; Robert S. Daum; Bo Söderquist; Girbe Buist

Methicillin-resistant staphylococci are disseminated all over the world and are frequent causes of health care- and community-associated infections. Methicillin-resistant strains typically carry the acquired mecA gene that encodes a low-affinity penicillin-binding protein (PBP), designated PBP2a or


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 1999

Anchoring of proteins to lactic acid bacteria

Kees Leenhouts; Girbe Buist; Jan Kok

The anchoring of proteins to the cell surface of lactic acid bacteria (LAB) using genetic techniques is an exciting and emerging research area that holds great promise for a wide variety of biotechnological applications. This paper reviews five different types of anchoring domains that have been explored for their efficiency in attaching hybrid proteins to the cell membrane or cell wall of LAB. The most exploited anchoring regions are those with the LPXTG box that bind the proteins in a covalent way to the cell wall. In recent years, two new modes of cell wall protein anchoring have been studied and these may provide new approaches in surface display. The important progress that is being made with cell surface display of chimaeric proteins in the areas of vaccine development and enzyme- or whole-cell immobilisation is highlighted.

Collaboration


Dive into the Girbe Buist's collaboration.

Top Co-Authors

Avatar

Jan Kok

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Maarten van Dijl

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Anton Steen

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Kok

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jolanda Neef

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Annette Dreisbach

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Francisco Romero Pastrana

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Mark J. J. B. Sibbald

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge