Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gireesh Rajashekara is active.

Publication


Featured researches published by Gireesh Rajashekara.


Science | 2007

Blue-light-activated histidine kinases: two-component sensors in bacteria.

Trevor E. Swartz; Tong-Seung Tseng; Marcus A. Frederickson; Gastón Paris; Diego J. Comerci; Gireesh Rajashekara; Jung-Gun Kim; Mary Beth Mudgett; Gary A. Splitter; Rodolfo A. Ugalde; Fernando A. Goldbaum; Winslow R. Briggs; Roberto A. Bogomolni

Histidine kinases, used for environmental sensing by bacterial two-component systems, are involved in regulation of bacterial gene expression, chemotaxis, phototaxis, and virulence. Flavin-containing domains function as light-sensory modules in plant and algal phototropins and in fungal blue-light receptors. We have discovered that the prokaryotes Brucella melitensis, Brucella abortus, Erythrobacter litoralis, and Pseudomonas syringae contain light-activated histidine kinases that bind a flavin chromophore and undergo photochemistry indicative of cysteinyl-flavin adduct formation. Infection of macrophages by B. abortus was stimulated by light in the wild type but was limited in photochemically inactive and null mutants, indicating that the flavin-containing histidine kinase functions as a photoreceptor regulating B. abortus virulence.


Journal of Bacteriology | 2004

Comparative Whole-Genome Hybridization Reveals Genomic Islands in Brucella Species

Gireesh Rajashekara; Jeremy D. Glasner; David A. Glover; Gary A. Splitter

Brucella species are responsible for brucellosis, a worldwide zoonotic disease causing abortion in domestic animals and Malta fever in humans. Based on host preference, the genus is divided into six species. Brucella abortus, B. melitensis, and B. suis are pathogenic to humans, whereas B. ovis and B. neotomae are nonpathogenic to humans and B. canis human infections are rare. Limited genome diversity exists among Brucella species. Comparison of Brucella species whole genomes is, therefore, likely to identify factors responsible for differences in host preference and virulence restriction. To facilitate such studies, we used the complete genome sequence of B. melitensis 16M, the species highly pathogenic to humans, to construct a genomic microarray. Hybridization of labeled genomic DNA from Brucella species to this microarray revealed a total of 217 open reading frames (ORFs) altered in five Brucella species analyzed. These ORFs are often found in clusters (islands) in the 16M genome. Examination of the genomic context of these islands suggests that many are horizontally acquired. Deletions of genetic content identified in Brucella species are conserved in multiple strains of the same species, and genomic islands missing in a given species are often restricted to that particular species. These findings suggest that, whereas the loss or gain of genetic material may be related to the host range and virulence restriction of certain Brucella species for humans, independent mechanisms involving gene inactivation or altered expression of virulence determinants may also contribute to these differences.


Journal of Bacteriology | 2008

Putative Quorum-Sensing Regulator BlxR of Brucella melitensis Regulates Virulence Factors Including the Type IV Secretion System and Flagella

Amy A. Rambow-Larsen; Gireesh Rajashekara; Erik Petersen; Gary A. Splitter

Brucella melitensis is an intracellular pathogen that establishes a replicative niche within macrophages. While the intracellular lifestyle of Brucella is poorly understood and few virulence factors have been identified, components of a quorum-sensing pathway in Brucella have recently been identified. The LuxR-type regulatory protein, VjbR, and an N-acylhomoserine lactone signaling molecule are both involved in regulating expression of the virB-encoded type IV secretion system. We have identified a second LuxR-type regulatory protein (BlxR) in Brucella. Microarray analysis of a blxR mutant suggests that BlxR regulates the expression of a number of genes, including those encoding the type IV secretion system and flagella. Confirming these results, deletion of blxR in B. melitensis reduced the transcriptional activities of promoters for the virB operon, flagellar genes, and another putative virulence factor gene, bopA. Furthermore, our data suggested that both BlxR and VjbR are positively autoregulated and cross-regulate the expression of each other. The blxR deletion strain exhibited reduced growth in macrophages, similar to that observed for a vjbR deletion strain. However, unlike the vjbR deletion, the blxR deletion did not fully attenuate virulence in mice. More strikingly, bioluminescent imaging revealed that dissemination of the blxR mutant was similar to that of wild-type B. melitensis, while the vjbR mutant was defective for systemic spread in IRF-1(-/-) mice, suggesting that these regulators are not functionally redundant but that they converge in a common pathway regulating bacterial processes.


Avian Diseases | 2015

Campylobacter in Poultry: Ecology and Potential Interventions

Orhan Sahin; Issmat I. Kassem; Zhangqi Shen; Jun Lin; Gireesh Rajashekara; Qijing Zhang

SUMMARY Avian hosts constitute a natural reservoir for thermophilic Campylobacter species, primarily Campylobacter jejuni and Campylobacter coli, and poultry flocks are frequently colonized in the intestinal tract with high numbers of the organisms. Prevalence rates in poultry, especially in slaughter-age broiler flocks, could reach as high as 100% on some farms. Despite the extensive colonization, Campylobacter is essentially a commensal in birds, although limited evidence has implicated the organism as a poultry pathogen. Although Campylobacter is insignificant for poultry health, it is a leading cause of food-borne gastroenteritis in humans worldwide, and contaminated poultry meat is recognized as the main source for human exposure. Therefore, considerable research efforts have been devoted to the development of interventions to diminish Campylobacter contamination in poultry, with the intention to reduce the burden of food-borne illnesses. During the past decade, significant advance has been made in understanding Campylobacter in poultry. This review summarizes the current knowledge with an emphasis on ecology, antibiotic resistance, and potential pre- and postharvest interventions.


Journal of Immunology | 2013

Divergent immunomodulating effects of probiotics on T cell responses to oral attenuated human rotavirus vaccine and virulent human rotavirus infection in a neonatal gnotobiotic piglet disease model.

Kuldeep S. Chattha; Anastasia N. Vlasova; Sukumar Kandasamy; Gireesh Rajashekara; Linda J. Saif

Rotaviruses (RVs) are a leading cause of childhood diarrhea. Current oral vaccines are not effective in impoverished countries where the vaccine is needed most. Therefore, alternative affordable strategies are urgently needed. Probiotics can alleviate diarrhea in children and enhance specific systemic and mucosal Ab responses, but the T cell responses are undefined. In this study, we elucidated the T cell and cytokine responses to attenuated human RV (AttHRV) and virulent human RV (HRV) in gnotobiotic pigs colonized with probiotics (Lactobacillus rhamnosus strain GG [LGG] and Bifidobacterium lactis Bb12 [Bb12]), mimicking gut commensals in breastfed infants. Neonatal gnotobiotic pigs are the only animal model susceptible to HRV diarrhea. Probiotic colonized and nonvaccinated (Probiotic) pigs had lower diarrhea and reduced virus shedding postchallenge compared with noncolonized and nonvaccinated pigs (Control). Higher protection in the Probiotic group coincided with higher ileal T regulatory cells (Tregs) before and after challenge, and higher serum TGF-β and lower serum and biliary proinflammatory cytokines postchallenge. Probiotic colonization in vaccinated pigs enhanced innate serum IFN-α, splenic and circulatory IFN-γ–producing T cells, and serum Th1 cytokines, but reduced serum Th2 cytokines compared with noncolonized vaccinated pigs (Vac). Thus, LGG+Bb12 induced systemic Th1 immunostimulatory effects on oral AttHRV vaccine that coincided with lower diarrhea severity and reduced virus shedding postchallenge in Vac+Pro compared with Vac pigs. Previously unreported intestinal CD8 Tregs were induced in vaccinated groups postchallenge. Thus, probiotics LGG+Bb12 exert divergent immunomodulating effects, with enhanced Th1 responses to oral AttHRV vaccine, whereas inducing Treg responses to virulent HRV.


Cellular Microbiology | 2005

Temporal analysis of pathogenic events in virulent and avirulent Brucella melitensis infections.

Gireesh Rajashekara; David A. Glover; Michael Krepps; Gary A. Splitter

Despite progress in mouse models of brucellosis, much remains unknown regarding Brucella dissemination and tissue localization. Here, we report the dynamics of Brucella infection in individual mice using bioluminescent Brucella melitensis. Bioluminescent imaging of infected interferon regulatory factor‐1 knockout (IRF‐1–/–) mice identified acute infection in many tissues. Brucella was found to replicate in the salivary glands of IRF‐1–/– and wild‐type C57BL/6 mice suggesting a previously unknown tissue preference. Establishing a niche in this region may have relevance in humans where infection can result from ingestion of few bacteria. Sublethal infection of IRF‐1–/– mice resulted in chronic Brucella localization in tail joints, an infection parallel to osteoarticular brucellosis in humans. Importantly, bioluminescent imaging rapidly identified attenuated EZ::TN/lux mutants in infected mice and revealed differences in dissemination, thereby defining the contribution of Brucella genes to virulence and tissue localization. Surprisingly, a virB mutant, though defective in persistence, disseminated similarly to virulent Brucella, suggesting bacterial spread is independent of VirB proteins that are important for intracellular survival. Together, our results reveal kinetics of acute and chronic Brucella infection in individual  mice  that  parallels  human  infection  as  well as readily identified attenuated bacteria. Our approach facilitates identifying virulence determinants that may control tissue specific replication and may help develop therapeutics to overcome Brucella‐induced chronic debilitating conditions.


PLOS ONE | 2013

Lactobacilli and Bifidobacteria Promote Immune Homeostasis by Modulating Innate Immune Responses to Human Rotavirus in Neonatal Gnotobiotic Pigs

Anastasia N. Vlasova; Kuldeep S. Chattha; Sukumar Kandasamy; Zhe Liu; Malak A. Esseili; Lulu Shao; Gireesh Rajashekara; Linda J. Saif

The effects of co-colonization with Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (Bb12) on 3-dose vaccination with attenuated HRV and challenge with virulent human rotavirus (VirHRV) were assessed in 4 groups of gnotobiotic (Gn) pigs: Pro+Vac (probiotic-colonized/vaccinated), Vac (vaccinated), Pro (probiotic-colonized, non-vaccinated) and Control (non-colonized, non-vaccinated). Subsets of pigs were euthanized pre- [post-challenge day (PCD) 0] and post (PCD7)-VirHRV challenge to assess diarrhea, fecal HRV shedding and dendritic cell/innate immune responses. Post-challenge, Pro+Vac and Vac groups were completely protected from diarrhea; protection rates against HRV shedding were 100% and 83%, respectively. Diarrhea and HRV shedding were reduced in Pro compared to Control pigs following VirHRV challenge. Diarrhea scores and virus shedding were significantly higher in Controls, compared to all other groups, coincident with significantly higher serum interferon-alpha levels post-challenge. LGG+Bb12 colonization ±vaccine promoted immunomaturation as reflected by increased frequencies of CD4, SWC3a, CD11R1, MHCII expressing mononuclear cells (MNCs) and conventional dendritic cells in intestinal tissues and blood post-challenge. Colonization decreased frequencies of toll-like receptors (TLR) 2 and TLR4 expressing MNCs from vaccinated pigs (Pro+Vac) pre-challenge and increased frequencies of TLR3 expressing MNCs from Pro pigs post-challenge, suggesting that probiotics likely exert anti-inflammatory (TLR2 and 4 down-regulation) and antiviral (TLR3 up-regulation by HRV dsRNA) actions via TLR signaling. Probiotic colonization alone (Pro) increased frequencies of intestinal and systemic apoptotic MNCs pre-challenge, thereby regulating immune hyperreactivity and tolerance. However, these frequencies were decreased in intestinal and systemic tissues post-challenge, moderating HRV-induced apoptosis. Additionally, post-challenge, Pro+Vac and Pro groups had significantly decreased MNC proliferation, suggesting that probiotics control excessive lymphoproliferative reactions upon VirHRV challenge. We conclude that in the neonatal Gn pig disease model, selected probiotics contribute to immunomaturation, regulate immune homeostasis and modulate vaccine and virulent HRV effects, thereby moderating HRV diarrhea.


Journal of Bacteriology | 2004

Denitrification Genes Regulate Brucella Virulence in Mice

Seung-Hun Baek; Gireesh Rajashekara; Gary A. Splitter; James P. Shapleigh

Brucella is the causative agent of the zoonotic disease brucellosis, which is endemic in many parts of the world. Genome sequencing of B. suis and B. melitensis revealed that both are complete denitrifiers. To learn more about the role of denitrification in these animal pathogens, a study of the role of denitrification in the closely related B. neotomae was undertaken. In contrast to B. suis and B. melitensis, it was found that B. neotomae is a partial denitrifier that can reduce nitrate to nitrite but no further. Examination of the B. neotomae genome showed that a deletion in the denitrification gene cluster resulted in complete loss of nirV and the partial deletion of nirK and nnrA. Even though the nor operon is intact, a norC-lacZ promoter fusion was not expressed in B. neotomae. However, the norC-lacZ fusion was expressed in the related denitrifier Agrobacterium tumefaciens, suggesting that the lack of expression in B. neotomae is due to inactivation of NnrA. A narK-lacZ promoter fusion was found to exhibit nitrate-dependent expression consistent with the partial denitrifier phenotype. Complementation of the deleted region in B. neotomae by using nirK, nirV, and nnrA from B. melitensis restored the ability of B. neotomae to reduce nitrite. There was a significant difference in the death of IRF-1-/- mice when infected with B. neotomae containing nirK, nirV, and nnrA and those infected with wild-type B. neotomae. The wild-type strain killed all the infected mice, whereas most of the mice infected with B. neotomae containing nirK, nirV, and nnrA survived.


Gut microbes | 2014

Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human rotavirus vaccine in a neonatal gnotobiotic pig disease model

Sukumar Kandasamy; Kuldeep S. Chattha; Anastasia N. Vlasova; Gireesh Rajashekara; Linda J. Saif

B cells play a key role in generation of protective immunity against rotavirus infection, a major cause of gastroenteritis in children. Current RV vaccines are less effective in developing countries compared to developed countries. Commensals/probiotics influence mucosal immunity, but the role of early gut colonizing bacteria in modulating intestinal B cell responses to RV vaccines is largely unknown. We co-colonized neonatal gnotobiotic pigs, the only animal model susceptible to HRV diarrhea, with 2 dominant bacterial species present in the gut of breastfed infants, Lactobacillus rhamnosus strain GG and Bifidobacterium animalis lactis Bb12 to evaluate their impact on B cell responses to an attenuated (Att) human rotavirus (HRV) Wa strain vaccine. Following HRV challenge, probiotic-colonized, AttHRV vaccinated piglets had significantly lower fecal scores and reduced HRV shedding titers compared to uncolonized, AttHRV vaccinated pigs. The reduction in HRV diarrhea was significantly correlated with higher intestinal IgA HRV antibody titers and intestinal HRV-specific IgA antibody secreting cell (ASC) numbers in probiotic-colonized, AttHRV vaccinated pigs compared to uncolonized, vaccinated pigs. The significantly higher small intestinal HRV IgA antibody responses coincided with higher IL-6, IL-10 and APRIL responses of ileal mononuclear cells (MNCs) and the immunomodulatory effects of probiotics genomic DNA on TGF-β and IL-10 responses. However, serum RV IgG antibody titers and total IgG titers were significantly lower in probiotic-colonized, AttHRV vaccinated pigs compared to uncolonized, vaccinated pigs, both pre- and post-challenge. In summary, LGG and Bb12 beneficially modulated intestinal B cell responses to HRV vaccine.


PLOS ONE | 2010

Polyphosphate kinase 2: a novel determinant of stress responses and pathogenesis in Campylobacter jejuni.

Dharanesh Gangaiah; Zhe Liu; Jesus Arcos; Issmat I. Kassem; Yasser M. Sanad; Jordi B. Torrelles; Gireesh Rajashekara

Background Inorganic polyphosphate (poly P) plays an important role in stress tolerance and virulence in many bacteria. PPK1 is the principal enzyme involved in poly P synthesis, while PPK2 uses poly P to generate GTP, a signaling molecule that serves as an alternative energy source and a precursor for various physiological processes. Campylobacter jejuni, an important cause of foodborne gastroenteritis in humans, possesses homologs of both ppk1 and ppk2. ppk1 has been previously shown to impact the pathobiology of C. jejuni. Methodology/Principal Findings Here, we demonstrate for the first time that the deletion of ppk2 in C. jejuni resulted in a significant decrease in poly P-dependent GTP synthesis, while displaying an increased intracellular ATP:GTP ratio. The Δppk2 mutant exhibited a significant survival defect under osmotic, nutrient, aerobic, and antimicrobial stresses and displayed an enhanced ability to form static biofilms. However, the Δppk2 mutant was not defective in poly P and ppGpp synthesis suggesting that PPK2-mediated stress tolerance is not ppGpp-mediated. Importantly, the Δppk2 mutant was significantly attenuated in invasion and intracellular survival within human intestinal epithelial cells as well as in chicken colonization. Conclusions/Significance Taken together, we have highlighted the role of PPK2 as a novel pathogenicity determinant that is critical for C. jejuni survival, adaptation, and persistence in the host environments. PPK2 is absent in humans and animals; therefore, can serve as a novel target for therapeutic intervention of C. jejuni infections.

Collaboration


Dive into the Gireesh Rajashekara's collaboration.

Top Co-Authors

Avatar

Anand Kumar

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Issmat I. Kassem

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Anastasia N. Vlasova

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Linda J. Saif

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Sukumar Kandasamy

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Gary A. Splitter

Wisconsin Alumni Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Yasser M. Sanad

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Lulu Shao

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

David D. Fischer

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Kuldeep S. Chattha

Ohio Agricultural Research and Development Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge