Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giri P. Krishnan is active.

Publication


Featured researches published by Giri P. Krishnan.


The Journal of Neuroscience | 2011

Ionic Dynamics Mediate Spontaneous Termination of Seizures and Postictal Depression State

Giri P. Krishnan; Maxim Bazhenov

Epileptic seizures are characterized by periods of recurrent, highly synchronized activity that spontaneously terminates, followed by postictal state when neuronal activity is generally depressed. The mechanisms for spontaneous seizure termination and postictal depression remain poorly understood. Using a realistic computational model, we demonstrate that termination of seizure and postictal depression state may be mediated by dynamics of the intracellular and extracellular ion concentrations. Spontaneous termination was linked to progressive increase of intracellular sodium concentration mediated by activation of sodium channels during highly active epileptic state. In contrast, an increase of intracellular chloride concentration extended seizure duration making possible long-lasting epileptic activity characterized by multiple transitions between tonic and clonic states. After seizure termination, the extracellular potassium was reduced below baseline, resulting in postictal depression. Our study suggests that the coupled dynamics of sodium, potassium, and chloride ions play a critical role in the development and termination of seizures. Findings from this study could help identify novel therapeutics for seizure disorder.


Schizophrenia Research | 2012

Auditory Steady State Response in the Schizophrenia, First-Degree Relatives, and Schizotypal Personality Disorder

Olga Rass; Jennifer K. Forsyth; Giri P. Krishnan; William P. Hetrick; Mallory J. Klaunig; Alan Breier; Brian F. O'Donnell; Colleen A. Brenner

The power and phase synchronization of the auditory steady state response (ASSR) at 40 Hz stimulation is usually reduced in schizophrenia (SZ). The sensitivity of the 40 Hz ASSR to schizophrenia spectrum phenotypes, such as schizotypal personality disorder (SPD), or to familial risk has been less well characterized. We compared the ASSR of patients with SZ, persons with schizotypal personality disorder, first degree relatives of patients with SZ, and healthy control participants. ASSRs were obtained to 20, 30, 40 and 50 Hz click trains, and assessed using measures of power (mean trial power or MTP) and phase consistency (phase locking factor or PLF). The MTP to 40 Hz stimulation was reduced in relatives, and there was a trend for MTP reduction in SZ. The 40 Hz ASSR was not reduced in SPD participants. PLF did not differ among groups. These data suggest the 40 Hz ASSR is sensitive to familial risk factors associated with schizophrenia.


Supplements to Clinical neurophysiology | 2013

The auditory steady-state response (ASSR): a translational biomarker for schizophrenia.

Brian F. O'Donnell; Jenifer L. Vohs; Giri P. Krishnan; Olga Rass; William P. Hetrick; Sandra L. Morzorati

Electrophysiological methods have demonstrated disturbances of neural synchrony and oscillations in schizophrenia which affect a broad range of sensory and cognitive processes. These disturbances may account for a loss of neural integration and effective connectivity in the disorder. The mechanisms responsible for alterations in synchrony are not well delineated, but may reflect disturbed interactions within GABAergic and glutamatergic circuits, particularly in the gamma range. Auditory steady-state responses (ASSRs) provide a non-invasive technique used to assess neural synchrony in schizophrenia and in animal models at specific response frequencies. ASSRs are electrophysiological responses entrained to the frequency and phase of a periodic auditory stimulus generated by auditory pathway and auditory cortex activity. Patients with schizophrenia show reduced ASSR power and phase locking to gamma range stimulation. We review alterations of ASSRs in schizophrenia, schizotypal personality disorder, and first-degree relatives of patients with schizophrenia. In vitro and in vivo approaches have been used to test cellular mechanisms for this pattern of findings. This translational, cross-species approach provides support for the role of N-methyl-D-aspartate and GABAergic dysregulation in the genesis of perturbed ASSRs in schizophrenia and persons at risk.


PLOS ONE | 2015

Coupling of Thalamocortical Sleep Oscillations Are Important for Memory Consolidation in Humans

Mohammad Niknazar; Giri P. Krishnan; Maxim Bazhenov; Sara C. Mednick

Sleep, specifically non-rapid eye movement (NREM) sleep, is thought to play a critical role in the consolidation of recent memories. Two main oscillatory activities observed during NREM, cortical slow oscillations (SO, 0.5–1.0Hz) and thalamic spindles (12–15Hz), have been shown to independently correlate with memory improvement. Yet, it is not known how these thalamocortical events interact, or the significance of this interaction, during the consolidation process. Here, we found that systemic administration of the GABAergic drug (zolpidem) increased both the phase-amplitude coupling between SO and spindles, and verbal memory improvement in humans. These results suggest that thalamic spindles that occur during transitions to the cortical SO Up state are optimal for memory consolidation. Our study predicts that the timely interactions between cortical and thalamic events during consolidation, contribute to memory improvement and is mediated by the level of inhibitory neurotransmission.


Journal of Neurophysiology | 2015

Electrogenic properties of the Na⁺/K⁺ ATPase control transitions between normal and pathological brain states.

Giri P. Krishnan; Gregory Filatov; Andrey Shilnikov; Maxim Bazhenov

Ionic concentrations fluctuate significantly during epileptic seizures. In this study, using a combination of in vitro electrophysiology, computer modeling, and dynamical systems analysis, we demonstrate that changes in the potassium and sodium intra- and extracellular ion concentrations ([K(+)] and [Na(+)], respectively) during seizure affect the neuron dynamics by modulating the outward Na(+)/K(+) pump current. First, we show that an increase of the outward Na(+)/K(+) pump current mediates termination of seizures when there is a progressive increase in the intracellular [Na(+)]. Second, we show that the Na(+)/K(+) pump current is crucial in maintaining the stability of the physiological network state; a reduction of this current leads to the onset of seizures via a positive-feedback loop. We then present a novel dynamical mechanism for bursting in neurons with a reduced Na(+)/K(+) pump. Overall, our study demonstrates the profound role of the current mediated by Na(+)/K(+) ATPase on the stability of neuronal dynamics that was previously unknown.


The Journal of Neuroscience | 2016

Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations

Yina Wei; Giri P. Krishnan; Maxim Bazhenov

Sleep is critical for regulation of synaptic efficacy, memories, and learning. However, the underlying mechanisms of how sleep rhythms contribute to consolidating memories acquired during wakefulness remain unclear. Here we studied the role of slow oscillations, 0.2–1 Hz rhythmic transitions between Up and Down states during stage 3/4 sleep, on dynamics of synaptic connectivity in the thalamocortical network model implementing spike-timing-dependent synaptic plasticity. We found that the spatiotemporal pattern of Up-state propagation determines the changes of synaptic strengths between neurons. Furthermore, an external input, mimicking hippocampal ripples, delivered to the cortical network results in input-specific changes of synaptic weights, which persisted after stimulation was removed. These synaptic changes promoted replay of specific firing sequences of the cortical neurons. Our study proposes a neuronal mechanism on how an interaction between hippocampal input, such as mediated by sharp wave-ripple events, cortical slow oscillations, and synaptic plasticity, may lead to consolidation of memories through preferential replay of cortical cell spike sequences during slow-wave sleep. SIGNIFICANCE STATEMENT Sleep is critical for memory and learning. Replay during sleep of temporally ordered spike sequences related to a recent experience was proposed to be a neuronal substrate of memory consolidation. However, specific mechanisms of replay or how spike sequence replay leads to synaptic changes that underlie memory consolidation are still poorly understood. Here we used a detailed computational model of the thalamocortical system to report that interaction between slow cortical oscillations and synaptic plasticity during deep sleep can underlie mapping hippocampal memory traces to persistent cortical representation. This study provided, for the first time, a mechanistic explanation of how slow-wave sleep may promote consolidation of recent memory events.


Neuropsychopharmacology | 2014

Disrupted gamma-band neural oscillations during coherent motion perception in heavy cannabis users

Patrick D. Skosnik; Giri P. Krishnan; Deepak Cyril D'Souza; William P. Hetrick; Brian F. O'Donnell

Previous work in animals and humans has shown that exogenous cannabinoids disrupt time-locked, evoked gamma oscillations (30–80 Hz). However, no studies to date have examined the effect of cannabis on non-time-locked, induced gamma oscillations during more complex Gestalt perception. The current study therefore utilized electroencephalography (EEG) to examine gamma oscillations during coherent motion perception in heavy cannabis users and controls. Chronic cannabis users (n=24; 12 h abstinence before study; positive 11-nor-9-carboxy-delta-9-tetrahydrocannabinol urine levels) and cannabis-naive controls (n=23) were evaluated. Stimuli consisted of random dot kinetograms (RDKs) that subjects passively viewed during three different conditions: coherent motion, incoherent motion, and static. Time × frequency analysis on EEG data was performed using Fourier-based mean trial power (MTP). Transient event-related potentials (ERPs) to stimulus onset (visual N100 and P200 components) were also evaluated. The results showed that the coherent motion condition produced a robust increase in neural activity in the gamma range (induced power from 40 to 59 Hz) as compared with the incoherent motion and static conditions. As predicted, the cannabis group showed significant reductions in induced gamma power in the coherent condition relative to healthy controls. No differences were observed between the groups in the N100 or P200 components, indicating intact primary sensory processing. Finally, cannabis users showed a trend toward increased scores on the Chapman Perceptual Aberration Scale (PAS) that was positively correlated with total years of active cannabis use. These data suggest that cannabis use may interfere with the generation of induced gamma-band neural oscillations that could in part mediate the perceptual-altering effects of exogenous cannabinoids.


eLife | 2016

Cellular and neurochemical basis of sleep stages in the thalamocortical network

Giri P. Krishnan; Sylvain Chauvette; Isaac Shamie; Sara Soltani; Igor Timofeev; Sydney S. Cash; Eric Halgren; Maxim Bazhenov

The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages. DOI: http://dx.doi.org/10.7554/eLife.18607.001


PLOS Computational Biology | 2016

Hippocampal CA1 Ripples as Inhibitory Transients

Paola Malerba; Giri P. Krishnan; Jean Marc Fellous; Maxim Bazhenov

Memories are stored and consolidated as a result of a dialogue between the hippocampus and cortex during sleep. Neurons active during behavior reactivate in both structures during sleep, in conjunction with characteristic brain oscillations that may form the neural substrate of memory consolidation. In the hippocampus, replay occurs within sharp wave-ripples: short bouts of high-frequency activity in area CA1 caused by excitatory activation from area CA3. In this work, we develop a computational model of ripple generation, motivated by in vivo rat data showing that ripples have a broad frequency distribution, exponential inter-arrival times and yet highly non-variable durations. Our study predicts that ripples are not persistent oscillations but result from a transient network behavior, induced by input from CA3, in which the high frequency synchronous firing of perisomatic interneurons does not depend on the time scale of synaptic inhibition. We found that noise-induced loss of synchrony among CA1 interneurons dynamically constrains individual ripple duration. Our study proposes a novel mechanism of hippocampal ripple generation consistent with a broad range of experimental data, and highlights the role of noise in regulating the duration of input-driven oscillatory spiking in an inhibitory network.


PLOS ONE | 2015

Phencyclidine Disrupts the Auditory Steady State Response in Rats

Emma Leishman; Brian F. O’Donnell; James B. Millward; Jenifer L. Vohs; Olga Rass; Giri P. Krishnan; Amanda R. Bolbecker; Sandra L. Morzorati

The Auditory Steady-State Response (ASSR) in the electroencephalogram (EEG) is usually reduced in schizophrenia (SZ), particularly to 40 Hz stimulation. The gamma frequency ASSR deficit has been attributed to N-methyl-D-aspartate receptor (NMDAR) hypofunction. We tested whether the NMDAR antagonist, phencyclidine (PCP), produced similar ASSR deficits in rats. EEG was recorded from awake rats via intracranial electrodes overlaying the auditory cortex and at the vertex of the skull. ASSRs to click trains were recorded at 10, 20, 30, 40, 50, and 55 Hz and measured by ASSR Mean Power (MP) and Phase Locking Factor (PLF). In Experiment 1, the effect of different subcutaneous doses of PCP (1.0, 2.5 and 4.0 mg/kg) on the ASSR in 12 rats was assessed. In Experiment 2, ASSRs were compared in PCP treated rats and control rats at baseline, after acute injection (5 mg/kg), following two weeks of subchronic, continuous administration (5 mg/kg/day), and one week after drug cessation. Acute administration of PCP increased PLF and MP at frequencies of stimulation below 50 Hz, and decreased responses at higher frequencies at the auditory cortex site. Acute administration had a less pronounced effect at the vertex site, with a reduction of either PLF or MP observed at frequencies above 20 Hz. Acute effects increased in magnitude with higher doses of PCP. Consistent effects were not observed after subchronic PCP administration. These data indicate that acute administration of PCP, a NMDAR antagonist, produces an increase in ASSR synchrony and power at low frequencies of stimulation and a reduction of high frequency (> 40 Hz) ASSR activity in rats. Subchronic, continuous administration of PCP, on the other hand, has little impact on ASSRs. Thus, while ASSRs are highly sensitive to NMDAR antagonists, their translational utility as a cross-species biomarker for NMDAR hypofunction in SZ and other disorders may be dependent on dose and schedule.

Collaboration


Dive into the Giri P. Krishnan's collaboration.

Top Co-Authors

Avatar

Maxim Bazhenov

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maxim Komarov

University of California

View shared research outputs
Top Co-Authors

Avatar

Mohsen Naji

University of California

View shared research outputs
Top Co-Authors

Avatar

Oscar Gonzalez

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terrence J. Sejnowski

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Yina Wei

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge