Gisela Kuhn
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gisela Kuhn.
Science Translational Medicine | 2011
Mikaël M. Martino; Federico Tortelli; Mayumi Mochizuki; Stephanie Traub; Dror Ben-David; Gisela Kuhn; Ralph Müller; Erella Livne; Sabine A. Eming; Jeffrey A. Hubbell
A multifunctional fibronectin fragment enhances the regenerative effects of growth factors in vivo in animal models of chronic wounds and critical-size bone defects. Sweet Synergy Engineers have long been interested in creating the perfect environment for repairing injured tissues, which range from broken blood vessels to shattered nerves. Such efforts have included both simple materials, like collagen, and complex ones comprising a polymeric labyrinth of biomolecules and cells. As described in this issue, Martino et al. have hit the sweet spot for engineering the cellular microenvironment: a combination of natural polymer and recombinant protein that recruits growth factors to wounds and convinces cells to repair the damage. Martino and colleagues sought to generate a matrix that would sequester growth factors. The authors started with a fibrin matrix, which is used clinically as a tissue substitute to promote healing. Next, they pieced together two fibronectin (FN) fragments—the 9th to 10th and the 12th to 14th type III repeats—to control integrin and growth factor binding, respectively. Finally, the resulting recombinant FN fragment, FN III9-10/12-14, was covalently immobilized on the fibrin scaffold. The FN III9-10/12-14 matrix was able to bind vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and bone morphogenetic protein (BMP)—three factors that are intricately involved in skin and bone repair. FN III9-10/12-14 in combination with VEGF and PDGF enhanced proliferation of endothelial cells, smooth muscle cells, and mesenchymal stem cells in vitro. The engineered FN fragment, when co-delivered with all three growth factors, also stimulated cell migration to a greater extent than control FN proteins, suggesting improved signaling synergy between growth factors and the recombinant FN. To see whether the material healed tissues in vivo, Martino and colleagues injected their designer scaffold into the wounds of diabetic mice and into the calvarial defects of skeletally mature rats. Enhanced reepithelialization, granulation tissue formation, and angiogenesis were noted for the wounds. For the bone defects, the authors reported increased bone tissue deposition and recruitment of bone progenitor cells. These preclinical demonstrations in rodent models show promise for the use of the FN III9-10/12-14–modified matrices in humans to heal chronic wounds and repair bones. Although testing in larger animal models might be necessary before translation, it is clear that these engineered microenvironments improve the synergy between endogenous growth factors and cells to restore tissue form and function to normal. Although growth factors naturally exert their morphogenetic influences within the context of the extracellular matrix microenvironment, the interactions among growth factors, their receptors, and other extracellular matrix components are typically ignored in clinical delivery of growth factors. We present an approach for engineering the cellular microenvironment to greatly accentuate the effects of vascular endothelial growth factor–A (VEGF-A) and platelet-derived growth factor–BB (PDGF-BB) for skin repair, and of bone morphogenetic protein–2 (BMP-2) and PDGF-BB for bone repair. A multifunctional recombinant fragment of fibronectin (FN) was engineered to comprise (i) a factor XIIIa substrate fibrin-binding sequence, (ii) the 9th to 10th type III FN repeat (FN III9-10) containing the major integrin-binding domain, and (iii) the 12th to 14th type III FN repeat (FN III12-14), which binds growth factors promiscuously, including VEGF-A165, PDGF-BB, and BMP-2. We show potent synergistic signaling and morphogenesis between α5β1 integrin and the growth factor receptors, but only when FN III9-10 and FN III12-14 are proximally presented in the same polypeptide chain (FN III9-10/12-14). The multifunctional FN III9-10/12-14 greatly enhanced the regenerative effects of the growth factors in vivo in a diabetic mouse model of chronic wounds (primarily through an angiogenic mechanism) and in a rat model of critical-size bone defects (through a mesenchymal stem cell recruitment mechanism) at doses where the growth factors delivered within fibrin only had no significant effects.
Science | 2014
Mikaël M. Martino; Priscilla S. Briquez; Esra Güç; Federico Tortelli; Witold W. Kilarski; Stephanie Metzger; Jeffrey J. Rice; Gisela Kuhn; Ralph Müller; Melody A. Swartz; Jeffrey A. Hubbell
Toward Successful Tissue Repair The therapeutic use of growth factors in tissue regeneration has suffered from safety and efficacy issues. Reasoning that the unmet potential may be because of nonphysiological delivery, Martino et al. (p. 885) engineered growth factors to bind strongly to extracellular matrix proteins. These variants were able to induce superior tissue repair, compared to the wild-type proteins. Furthermore, unwanted side effects were decreased: For example, the engineered angiogenic growth factor VEGF showed reduced vascular permeability, a concern that has limited the therapeutic efficacy of wild-type VEGF. A strategy to engineer tissues uses substantially lower growth factor levels without compromising tissue viability. Growth factors (GFs) are critical in tissue repair, but their translation to clinical use has been modest. Physiologically, GF interactions with extracellular matrix (ECM) components facilitate localized and spatially regulated signaling; therefore, we reasoned that the lack of ECM binding in their clinically used forms could underlie the limited translation. We discovered that a domain in placenta growth factor-2 (PlGF-2123-144) binds exceptionally strongly and promiscuously to ECM proteins. By fusing this domain to the GFs vascular endothelial growth factor–A, platelet-derived growth factor–BB, and bone morphogenetic protein–2, we generated engineered GF variants with super-affinity to the ECM. These ECM super-affinity GFs induced repair in rodent models of chronic wounds and bone defects that was greatly enhanced as compared to treatment with the wild-type GFs, demonstrating that this approach may be useful in several regenerative medicine applications.
Bone | 2011
Friederike A. Schulte; Floor M. Lambers; Gisela Kuhn; Ralph Müller
Bone is a living tissue able to adapt its structure to external influences such as altered mechanical loading. This adaptation process is governed by two distinct cell types: bone-forming cells called osteoblasts and bone-resorbing cells called osteoclasts. It is therefore of particular interest to have quantitative access to the outcomes of bone formation and resorption separately. This article presents a non-invasive three-dimensional technique to directly extract bone formation and resorption parameters from time-lapsed in vivo micro-computed tomography scans. This includes parameters such as Mineralizing Surface (MS), Mineral Apposition Rate (MAR), and Bone Formation Rate (BFR), which were defined in accordance to the current nomenclature of dynamic histomorphometry. Due to the time-lapsed and non-destructive nature of in vivo micro-computed tomography, not only formation but also resorption can now be assessed quantitatively and time-dependent parameters Eroded Surface (ES) as well as newly defined indices Mineral Resorption Rate (MRR) and Bone Resorption Rate (BRR) are introduced. For validation purposes, dynamic formation parameters were compared to the traditional quantitative measures of dynamic histomorphometry, where MAR correlated with R = 0.68 and MS with R = 0.78 (p < 0.05). Reproducibility was assessed in 8 samples that were scanned 5 times and errors ranged from 0.9% (MRR) to 6.6% (BRR). Furthermore, the new parameters were applied to a murine in vivo loading model. A comparison of directly extracted parameters between formation and resorption within each animal revealed that in the control group, i.e., during normal remodeling, MAR was significantly lower than MRR (p < 0.01), whereas MS compared to ES was significantly higher (p < 0.0001). This implies that normal remodeling seems to take place by many small formation packets and few but large resorption volumes. After 4 weeks of mechanical loading, newly extracted trabecular BFR and MS were significantly higher (p < 0.01) in the loading compared to the control group. At the same time, ES was significantly decreased (p < 0.01). This indicates that modeling induced by mechanical loading takes place primarily by increased area, not width of formation packets. With these results, we conclude that the non-invasive direct technique is well suited to extract dynamic bone morphometry parameters and eventually gain more insight into the processes of bone adaptation not only for formation but also resorption.
PLOS ONE | 2013
Friederike A. Schulte; Davide Ruffoni; Floor M. Lambers; David Christen; Duncan J. Webster; Gisela Kuhn; Ralph Müller
Bone is able to react to changing mechanical demands by adapting its internal microstructure through bone forming and resorbing cells. This process is called bone modeling and remodeling. It is evident that changes in mechanical demands at the organ level must be interpreted at the tissue level where bone (re)modeling takes place. Although assumed for a long time, the relationship between the locations of bone formation and resorption and the local mechanical environment is still under debate. The lack of suitable imaging modalities for measuring bone formation and resorption in vivo has made it difficult to assess the mechanoregulation of bone three-dimensionally by experiment. Using in vivo micro-computed tomography and high resolution finite element analysis in living mice, we show that bone formation most likely occurs at sites of high local mechanical strain (p<0.0001) and resorption at sites of low local mechanical strain (p<0.0001). Furthermore, the probability of bone resorption decreases exponentially with increasing mechanical stimulus (R2 = 0.99) whereas the probability of bone formation follows an exponential growth function to a maximum value (R2 = 0.99). Moreover, resorption is more strictly controlled than formation in loaded animals, and ovariectomy increases the amount of non-targeted resorption. Our experimental assessment of mechanoregulation at the tissue level does not show any evidence of a lazy zone and suggests that around 80% of all (re)modeling can be linked to the mechanical micro-environment. These findings disclose how mechanical stimuli at the tissue level contribute to the regulation of bone adaptation at the organ level.
Bone | 2011
Floor M. Lambers; Friederike A. Schulte; Gisela Kuhn; Duncan J. Webster; Ralph Müller
It is known that mechanical loading leads to an increase in bone mass through a positive shift in the balance between bone formation and bone resorption. How the remodeling sites change over time as an effect of loading remains, however, to be clarified. The purpose of this paper was to investigate how bone formation and resorption sites are modulated by mechanical loading over time by using a new imaging technique that extracts three dimensional formation and resorption parameters from time-lapsed in vivo micro-computed tomography images. To induce load adaptation, the sixth caudal vertebra of C57BL/6 mice was cyclically loaded through pins in the adjacent vertebrae at either 8 N or 0 N (control) three times a week for 5 min (3000 cycles) over a total of 4 weeks. The results showed that mechanical loading significantly increased trabecular bone volume fraction by 20% (p<0.001) and cortical area fraction by 6% (p<0.001). The bone formation rate was on average 23% greater (p<0.001) and the bone resorption rate was on average 25% smaller (p<0.001) for the 8 N group than for the 0 N group. The increase in bone formation rate for the 8 N group was mostly an effect of a significantly increased surface of bone formation sites (on average 16%, p<0.001), while the thickness of bone formation packages was less affected (on average 5% greater, p<0.05). At the same time the surface of bone resorption sites was significantly reduced (on average 15%, p<0.001), while the depth of resorption pits remained the same. For the 8 N group, the strength of the whole bone increased significantly by 24% (p<0.001) over the loading period, while the strain energy density in the trabecular bone decreased significantly by 24% (p<0.001). In conclusion, mouse tail vertebrae adapt to mechanical loading by increasing the surface of formation sites and decreasing the surface of resorption sites, leading to an overall increase in bone strength. This new imaging technique will provide opportunities to investigate in vivo bone remodeling in the context of disease and treatment options, with the added value that both bone formation and bone resorption parameters can be nondestructively calculated over time.
Journal of Tissue Engineering and Regenerative Medicine | 2014
Cheryl V. Rahman; Dror Ben-David; Amritpaul Dhillon; Gisela Kuhn; Toby Gould; Ralph Müller; Felicity R.A.J. Rose; Kevin M. Shakesheff; Erella Livne
Sustained and controlled delivery of growth factors, such as bone morphogenetic protein 2 (BMP‐2), from polymer scaffolds has excellent potential for enhancing bone regeneration. The present study investigated the use of novel sintered polymer scaffolds prepared using temperature‐sensitive PLGA/PEG particles. Growth factors can be incorporated into these scaffolds by mixing the reconstituted growth factor with the particles prior to sintering. The ability of the PLGA/PEG scaffolds to deliver BMP‐2 in a controlled and sustained manner was assessed and the osteogenic potential of these scaffolds was determined in a mouse calvarial defect model. BMP‐2 was released from the scaffolds in vitro over 3 weeks. On average, ca. 70% of the BMP‐2 loaded into the scaffolds was released by the end of this time period. The released BMP‐2 was shown to be active and to induce osteogenesis when used in a cell culture assay. A substantial increase in new bone volume of 55% was observed in a mouse calvarial defect model for BMP‐2‐loaded PLGA/PEG scaffolds compared to empty defect controls. An increase in new bone volume of 31% was observed for PLGA/PEG scaffolds without BMP‐2, compared to empty defect controls. These results demonstrate the potential of novel PLGA/PEG scaffolds for sustained BMP‐2 delivery for bone‐regeneration applications. Copyright
Biomaterials | 2013
Dror Ben-David; Samer Srouji; Keren Shapira-Schweitzer; Olga Kossover; Eran Ivanir; Gisela Kuhn; Ralph Müller; Dror Seliktar; Erella Livne
Bone repair strategies utilizing resorbable biomaterial implants aim to stimulate endogenous cells in order to gradually replace the implant with functional repair tissue. These biomaterials should therefore be biodegradable, osteoconductive, osteoinductive, and maintain their integrity until the newly formed host tissue can contribute proper function. In recent years there has been impressive clinical outcomes for this strategy when using osteoconductive hydrogel biomaterials in combination with osteoinductive growth factors such as human recombinant bone morphogenic protein (hrBMP-2). However, the success of hrBMP-2 treatments is not without risks if the factor is delivered too rapidly and at very high doses because of a suboptimal biomaterial. Therefore, the aim of this study was to evaluate the use of a PEGylated fibrinogen (PF) provisional matrix as a delivery system for low-dose hrBMP-2 treatment in a critical size maxillofacial bone defect model. PF is a semi-synthetic hydrogel material that can regulate the release of physiological doses of hrBMP-2 based on its controllable physical properties and biodegradation. hrBMP-2 release from the PF material and hrBMP-2 bioactivity were validated using in vitro assays and a subcutaneous implantation model in rats. Critical size calvarial defects in mice were treated orthotopically with PF containing 8 μg/ml hrBMP-2 to demonstrate the capacity of these bioactive implants to induce enhanced bone formation in as little as 6 weeks. Control defects treated with PF alone or left empty resulted in far less bone formation when compared to the PF/hrBMP-2 treated defects. These results demonstrate the feasibility of using a semi-synthetic biomaterial containing small doses of osteoinductive hrBMP-2 as an effective treatment for maxillofacial bone defects.
Journal of Biomedical Materials Research Part B | 2013
Cheryl V. Rahman; Gisela Kuhn; Lisa J. White; Giles T. S. Kirby; Oommen P. Varghese; Jane S. McLaren; Helen Cox; Felicity R.A.J. Rose; Ralph Müller; Jöns Hilborn; Kevin M. Shakesheff
Biodegradable polymer scaffolds have great potential for regenerative medicine applications such as the repair of musculoskeletal tissues. Here, we describe the development of scaffolds that blend hydrogel components with thermoplastic materials, combining the unique properties of both components to create mouldable formulations. This study focuses on the structural and mechanical properties of the composite scaffolds, produced by combining temperature-sensitive poly(DL-lactic acid-co-glycolic acid) (PLGA)/poly(ethylene glycol) (PEG) particles with a hydrogel component [Pluronic F127, fibrin or hyaluronic acid (HyA)]. The composite formulations solidified over time at 37°C, with a significant increase (p ≤ 0.05) in compressive strength observed from 15 min to 2 h at this temperature. The maximum compressive strength was 1.2 MPa for PLGA/PEG-Pluronic F127 scaffolds, 2.4 MPa for PLGA/PEG-HyA scaffolds and 0.6 MPa for PLGA/PEG-fibrin scaffolds. Porosity for each of the PLGA/PEG-hydrogel formulations tested was between 50 and 51%. This study illustrates the ability to combine this thermoplastic PLGA/PEG system with hydrogels to fabricate composite scaffolds, and demonstrates that altering the particle to hydrogel ratio produces scaffolds with varying mechanical properties.
Bone | 2013
Friederike A. Schulte; Alexander Zwahlen; Floor M. Lambers; Gisela Kuhn; Davide Ruffoni; Duncan Betts; Duncan J. Webster; Ralph Müller
Computational models are an invaluable tool to test different mechanobiological theories and, if validated properly, for predicting changes in individuals over time. Concise validation of in silico models, however, has been a bottleneck in the past due to a lack of appropriate reference data. Here, we present a strain-adaptive in silico algorithm which is validated by means of experimental in vivo loading data as well as by an in vivo ovariectomy experiment in the mouse. The maximum prediction error following four weeks of loading resulted in 2.4% in bone volume fraction (BV/TV) and 8.4% in other bone structural parameters. Bone formation and resorption rate did not differ significantly between experiment and simulation. The spatial distribution of formation and resorption sites matched in 55.4% of the surface voxels. Bone loss was simulated with a maximum prediction error of 12.1% in BV/TV and other bone morphometric indices, including a saturation level after a few weeks. Dynamic rates were more difficult to be accurately predicted, showing evidence for significant differences between simulation and experiment (p<0.05). The spatial agreement still amounted to 47.6%. In conclusion, we propose a computational model which was validated by means of experimental in vivo data. The predictive value of an in silico model may become of major importance if the computational model should be applied in clinical settings to predict bone changes due to disease and test the efficacy of potential pharmacological interventions.
Bone | 2013
Floor M. Lambers; Kathleen Koch; Gisela Kuhn; Davide Ruffoni; Claudia Weigt; Friederike A. Schulte; Ralph Müller
Bone has the ability to adapt to external loading conditions. Especially the beneficial effect of short-term cyclic loading has been investigated in a number of in vivo animal studies. The aim of this study was to assess the long-term effect (>10 weeks) of cyclic mechanical loading on the bone microstructure, bone stiffness, and bone remodeling rates. Mice were subjected to cyclic mechanical loading at the sixth caudal vertebra with 8N or 0N (control) three times per week for a total period of 14 weeks. Structural bone parameters were determined from in vivo micro-computed tomography (micro-CT) scans performed at week 0, 4, 6, 8, 10, 12, and 14. Mechanical parameters were derived from micro-finite element analysis. Dynamic bone morphometry was calculated using registration of serial micro-CT scans. Bone volume fraction and trabecular thickness increased significantly more for the loaded group than for the control group (p = 0.006 and p = 0.002 respectively). The trabecular bone microstructure adapted to the load of 8N in approximately ten weeks, indicated by the trabecular bone volume fraction, which increased from 16.7% at 0 weeks to 21.6% at week 10 and only showed little change afterwards (bone volume fraction of 21.5% at 14 weeks). Similarly bone stiffness - (at the start of the experiment 649N/mm) - reached 846N/mm at 10 weeks in the loaded group and was maintained to the end of the experiment (850N/mm). At 4 weeks the bone formation rate was 32% greater and the bone resorption rate 22% less for 8N compared to 0N. This difference was significantly reduced as the bone adapted to 8N, with 8N remodeling rates returning to the values of the 0N group at approximately 10 weeks. Together these data suggest that once bone has adapted to a new loading state, the remodeling rates reduce gradually while maintaining bone volume fraction and stiffness.