Gisella Puga Yung
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gisella Puga Yung.
Proceedings of the National Academy of Sciences of the United States of America | 2004
Berent J. Prakken; Rodrigo Samodal; Tho Le; Francesca Giannoni; Gisella Puga Yung; John Scavulli; Diane Amox; Sarah Roord; Ismé de Kleer; Dustan Bonnin; Paola Lanza; Charles C. Berry; Margherita Massa; Rosario Billetta; Salvatore Albani
Modulation of epitope-specific immune responses would represent a major addition to available therapeutic options for many autoimmune diseases. The objective of this work was to induce immune deviation by mucosal peptide-specific immunotherapy in rheumatoid arthritis (RA) patients, and to dissect the related immunological mechanisms by using a technology for the detection of low-affinity class II-restricted peptide-specific T cells. A group of patients with early RA was treated for 6 months orally with dnaJP1, a peptide that induces proinflammatory T cell responses in naive RA patients. Immunological analysis at initial, intermediate and end treatment points showed an intriguing change from proinflammatory to regulatory T cell function. In fact, dnaJP1-induced T cell production of IL-4 and IL-10 increased significantly when initial and end treatment points were compared, whereas dnaJP1-induced T cell proliferation and production of IL-2, IFN-γ, and tumor necrosis factor-α decreased significantly. The total number of dnaJP1-specific cells did not change over time, whereas expression of foxP3 by CD4+CD25bright cells increased, suggesting that the treatment affected regulatory T cell function. Thus, rather than clonal deletion, the observed change in immune reactivity to dnaJP1 was the outcome of treatment-induced emergence of T cells with a different functional phenotype. This study contributes to our knowledge of mechanisms and tools needed for antigen-specific immune modulation in humans, thus laying the foundation for exploitation of this approach for therapeutic purposes.
PLOS ONE | 2006
Sarah Roord; Evelien Zonneveld-Huijssoon; Tho Le; Gisella Puga Yung; Eva Koffeman; Arash Ronaghy; Negar Ghahramani; Paola Lanza; Rosario Billetta; Berent J. Prakken; Salvatore Albani
Innate and adaptive immunity contribute to the pathogenesis of autoimmune arthritis by generating and maintaining inflammation, which leads to tissue damage. Current biological therapies target innate immunity, eminently by interfering with single pro-inflammatory cytokine pathways. This approach has shown excellent efficacy in a good proportion of patients with Rheumatoid Arthritis (RA), but is limited by cost and side effects. Adaptive immunity, particularly T cells with a regulatory function, plays a fundamental role in controlling inflammation in physiologic conditions. A growing body of evidence suggests that modulation of T cell function is impaired in autoimmunity. Restoration of such function could be of significant therapeutic value. We have recently demonstrated that epitope-specific therapy can restore modulation of T cell function in RA patients. Here, we tested the hypothesis that a combination of anti-cytokine and epitope-specific immunotherapy may facilitate the control of autoimmune inflammation by generating active T cell regulation. This novel combination of mucosal tolerization to a pathogenic T cell epitope and single low dose anti-TNFα was as therapeutically effective as full dose anti-TNFα treatment. Analysis of the underlying immunological mechanisms showed induction of T cell immune deviation.
Diabetes | 2011
Yannick D. Muller; Dela Golshayan; Driss Ehirchiou; Jean Christophe Wyss; Laurianne Giovannoni; Raphael Meier; Véronique Serre-Beinier; Gisella Puga Yung; Philippe Morel; Leo H. Buhler; Jorg Dieter Seebach
OBJECTIVE Streptozotocin (STZ) is the most widely used diabetogenic agent in animal models of islet transplantation. However, the immunomodifying effects of STZ and the ensuing hyperglycemia on lymphocyte subsets, particularly on T regulatory cells (Tregs), remain poorly understood. RESEARCH DESIGN AND METHODS This study evaluated how STZ-induced diabetes affects adaptive immunity and the consequences thereof on allograft rejection in murine models of islet and skin transplantation. The respective toxicity of STZ and hyperglycemia on lymphocyte subsets was tested in vitro. The effect of hyperglycemia was assessed independently of STZ in vivo by the removal of transplanted syngeneic islets, using an insulin pump, and with rat insulin promoter diphtheria toxin receptor transgenic mice. RESULTS Early lymphopenia in both blood and spleen was demonstrated after STZ administration. Direct toxicity of STZ on lymphocytes, particularly on CD8+ cells and B cells, was shown in vitro. Hyperglycemia also correlated with blood and spleen lymphopenia in vivo but was not lymphotoxic in vitro. Independently of hyperglycemia, STZ led to a relative increase of Tregs in vivo, with the latter retaining their suppressive capacity in vitro. The higher frequency of Tregs was associated with Treg proliferation in the blood, but not in the spleen, and higher blood levels of transforming growth factor-β. Finally, STZ administration delayed islet and skin allograft rejection compared with naive mice. CONCLUSIONS These data highlight the direct and indirect immunosuppressive effects of STZ and acute hyperglycemia, respectively. Thus, these results have important implications for the future development of tolerance-based protocols and their translation from the laboratory to the clinic.
PLOS ONE | 2010
Yannick D. Muller; Gang Mai; Philippe Morel; Véronique Serre-Beinier; Carmen Gonelle-Gispert; Gisella Puga Yung; Driss Ehirchiou; Jean-Christophe Wyss; Sinda Bigenzahn; Magali Irla; Christoph Heusser; Dela Golshayan; Jorg Dieter Seebach; Thomas Wekerle; Leo H. Buhler
Background Anti-CD154 (MR1) monoclonal antibody (mAb) and rapamycin (RAPA) treatment both improve survival of rat-to-mouse islet xenograft. The present study investigated the effect of combined RAPA/MR1 treatment on rat-to-mouse islet xenograft survival and analyzed the role of CD4+CD25+Foxp3+ T regulatory cells (Treg) in the induction and maintenance of the ensuing tolerance. Methodology/Principal Findings C57BL/6 mice were treated with MR1/RAPA and received additional monoclonal anti-IL2 mAb or anti CD25 mAb either early (0–28 d) or late (100–128 d) post-transplantation. Treg were characterised in the blood, spleen, draining lymph nodes and within the graft of tolerant and rejecting mice by flow cytometry and immunohistochemistry. Fourteen days of RAPA/MR1 combination therapy allowed indefinite islet graft survival in >80% of the mice. Additional administration of anti-IL-2 mAb or depleting anti-CD25 mAb at the time of transplantation resulted in rejection (100% and 89% respectively), whereas administration at 100 days post transplantation lead to lower rejection rates (25% and 40% respectively). Tolerant mice showed an increase of Treg within the graft and in draining lymph nodes early post transplantation, whereas 100 days post transplantation no significant increase of Treg was observed. Rejecting mice showed a transient increase of Treg in the xenograft and secondary lymphoid organs, which disappeared within 7 days after rejection. Conclusions/Significances These results suggest a critical role for Treg in the induction phase of tolerance early after islet xenotransplantation. These encouraging data support the need of developing further Treg therapy for overcoming the species barrier in xenotransplantation.
Current Opinion in Organ Transplantation | 2009
Gisella Puga Yung; Marten K. J. Schneider; Jorg Dieter Seebach
Purpose of reviewTo summarize the current knowledge of the immune response generated against xenografts stemming from α1,3-galactosyltransferase knockout (GalT-KO) pigs. In particular, we will address the nature of potentially remaining Gal epitopes, the role of non-Gal xenoantigens, and the cellular response directed against GalT-KO tissues. Recent findingsNew findings support the view that porcine cells do not express isoglobotrihexosylceramide 3, and GalT-KO pigs, if at all, express negligible levels of Gal. The anti-non-Gal antibody response to GalT-KO cells allowed the identification of several potentially relevant porcine xenoantigens, mainly carbohydrates. Coculture of wildtype pig aortic endothelial cells but not of GalT-KO pig aortic endothelial cells with whole human blood induces the secretion of porcine and human cytokines and the upregulation of E-selectin; in contrast, the transmigration of human leukocytes across porcine endothelium is not regulated by Gal. SummaryNew immunological problems are arising after the elimination of Gal by the generation of GalT-KO pigs; these include non-Gal antibodies and the identification of their elusive antigens, as well as cellular components of the immune system, including neutrophils, macrophages, natural killer cells, and T cells.
PLOS ONE | 2009
Gisella Puga Yung; Meredith Fidler; Erika Albani; Naomi Spermon; Gijs Teklenburg; Robert O. Newbury; Nicole Schechter; Theo van den Broek; Berent J. Prakken; Rosario Billetta; Ranjan Dohil; Salvatore Albani
Pediatric Crohns disease is a chronic auto inflammatory bowel disorder affecting children under the age of 17 years. A putative etiopathogenesis of Crohns disease (CD) is associated with disregulation of immune response to antigens commonly present in the gut microenvironment. Heat shock proteins (HSP) have been identified as ubiquitous antigens with the ability to modulate inflammatory responses associated with several autoimmune diseases. The present study tested the contribution of immune responses to HSP in the amplification of autoimmune inflammation in chronically inflamed mucosa of pediatric CD patients. Colonic biopsies obtained from normal and CD mucosa were stimulated with pairs of Pan HLA-DR binder HSP60-derived peptides (human/bacterial homologues). The modulation of RNA and protein levels of induced proinflammatory cytokines were measured. We identified two epitopes capable of sustaining proinflammatory responses, specifically TNF〈 and IFN© induction, in the inflamed intestinal mucosa in CD patients. The responses correlated positively with clinical and histological measurements of disease activity, thus suggesting a contribution of immune responses to HSP in pediatric CD site-specific mucosal inflammation.
Transplantation | 2007
Gisella Puga Yung; Piero V. Valli; Astrid Starke; Regula Mueller; Thomas Fehr; Marija Cesar-Özpamir; Urs Schanz; Markus Weber; Rudolf P. Wüthrich; Jorg Dieter Seebach; Georg Stussi
Due to different detection methods, a comparison of anti-A/B antibody (Ab) levels among transplantation centers after living donor ABO-incompatible kidney transplantation is problematic. In the present study, anti-A/B Ab levels were determined prior to, and after, blood group A-to-O kidney transplantation using a recently established semiquantitative flow cytometry-based method, ABO fluorescence-activated cell sorting (ABO-FACS), and compared with standard agglutination titers and indirect antiglobulin testing. Pretransplant agglutination titers were reduced from 1:64 to 1:4, by a total of 14 Glycosorb A column immunoadsorptions (IADSs). Compared with the agglutination titers, antidonor immunoglobulin (Ig) M ABO-FACS mean fluorescence intensity ratios (MFIRs) decreased faster and remained low. No difference was observed using donor type or third-party A red blood cells (RBCs) for the ABO-FACS. Glycosorb A columns were not specific, also reducing anti-B and antiporcine IgM levels, which was confirmed by detecting anti-A/B and antiporcine Abs in the column eluates. In conclusion, analysis of pre- and posttransplant Abs from ABO-incompatible kidney transplant recipients by ABO-FACS allows a better understanding of Ab kinetics, which may improve the design of future IADS protocols.
Xenotransplantation | 2012
Gisella Puga Yung; Yunsen Li; Lubor Borsig; Anne-Laure Millard; Maria B. Karpova; Dapeng Zhou; Jorg Dieter Seebach
Puga Yung GL, Li Y, Borsig L, Millard A‐L, Karpova MB, Zhou D, Seebach JD. Complete absence of the αGal xenoantigen and isoglobotrihexosylceramide in α1,3galactosyltransferase knock‐out pigs. Xenotransplantation 2012; 19: 196–206.
Frontiers in Immunology | 2013
Anne-Laure Millard; Piero Valli; Georg Stussi; Nicolas J. Mueller; Gisella Puga Yung; Jorg Dieter Seebach
Physical as well as psychological stress increases the number of circulating peripheral blood NK cells. Whereas some studies found a positive correlation between exercise and NK cell counts and cytotoxic activity, others showed that, for example, heavy training leads to a decrease in per cell NK cytotoxicity. Thus, the impact of exercise on NK cell function and eventually on altered immunocompetence remains to be elucidated. Here, we investigated whether a single bout of brief exercise, consisting in running up and down 150 stair-steps, affects the number and function of circulating NK cells. NK cells, obtained from 29 healthy donors, before and immediately after brief exercise, were assessed for numbers, phenotype, IFNγ production, degranulation, cytotoxicity, and in vitro response to stimulation with IL-2, IL-2/IL-12, or TLR2 agonists. Running resulted in a sixfold increase in the number of CD3−/CD56+ NK cells, but decreased the frequency of CD56bright NK cells about twofold. Brief exercise did not significantly interfere with baseline IFNγ secretion or NK cell cytotoxicity. In vitro stimulation with IL-2 and TLR2 agonists (lipoteichoic acid, and synthetic triacylated lipopeptide Pam3CSK4) enhanced IFNγ-secretion, degranulation, and cytotoxicity mediated by NK cells isolated pre-exercise, but had less effect on NK cells isolated following exercise. There were no differences in response to combined IL-2/IL-12 stimulation. In conclusion, having no obvious impact on baseline NK functions, brief exercise might be used as a simple method to significantly increase the number of CD56dim NK cell available for in vitro experiments. Nevertheless, the observed impaired responses to stimulation suggest an alteration of NK cell-mediated immunity by brief exercise which is at least in part explained by a concomitant decrease of the circulating CD56bright NK cell fraction.
Haematologica | 2011
Regula J. Mueller; Georg Stussi; Gisella Puga Yung; Milica Nikolic; Davide Soldini; Jörg Halter; Sandrine Meyer-Monard; Alois Gratwohl; Jakob Passweg; Bernhard Odermatt; Urs Schanz; Barbara C Biedermann; Jorg Dieter Seebach
Background The possibility that allogeneic hematopoietic stem cell transplantation performed across the ABO blood group-barrier is associated with an increase of graft-versus-host disease, in particular endothelial damage, has not been elucidated so far. For this reason, we investigated the level of endothelial cell chimerism after allogeneic hematopoietic stem cell transplantation in order to delineate the role of hematopoietic stem cells in endothelial replacement. Design and Methods The frequency of donor-derived endothelial cells was analyzed in 52 hematopoietic stem cell transplant recipients, in 22 normal skin biopsies, in 12 skin samples affected by graft-versus-host disease, various tissues from five autopsies and four secondary solid tumors by ABH immunohistochemistry, XY fluorescence in situ hybridization and short tandem repeat analysis of laser captured endothelial cells. Results Skin biopsies from two patients transplanted with minor ABO-incompatible grafts (i.e. O in A) showed 3.3% and 0.9% H antigen-positive donor-derived endothelial cells by ABH immunohistochemistry. Tumor biopsies from two recipients showed 1.2% and 2.5% donor-derived endothelial cells by combined immunohistochemistry/ fluorescence in situ hybridization. All other skin samples, heart, liver, bone-marrow, and tumor tissues failed to reveal donor-type endothelial cells up to several years after ABO-incompatible hematopoietic stem cell transplantation. Conclusions Endothelial cell replacement by bone marrow-derived donor cells after allogeneic hematopoietic stem cell transplantation is a rare event. It does not seem to represent a major mechanism of physiological in vivo blood vessel formation, tumor neoangiogenesis, vascular repair after graft-versus-host disease episodes or acceptance of ABO-incompatible grafts.