Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giselle Pidde-Queiroz is active.

Publication


Featured researches published by Giselle Pidde-Queiroz.


Toxicon | 2013

Enzymatic properties of venoms from Brazilian scorpions of Tityus genus and the neutralisation potential of therapeutical antivenoms.

Emerson José Venancio; Fernanda C.V. Portaro; Alexandre Kazuo Kuniyoshi; Daniela Cajado Carvalho; Giselle Pidde-Queiroz; Denise V. Tambourgi

Tityus scorpion stings are an important public health problem in Brazil, where the incidence of such stings exceeds the incidence of the health problems caused by other venomous animals, including snakes. In this study, we have analysed specific enzymatic activities of the venom from the Brazilian scorpions of Tityus genus, i.e., Tityus serrulatus, Tityus bahiensis and Tityus stigmurus. The data presented here revealed that Tityus spp. venoms exhibited significant hyaluronidase activity but no phospholipase activity. All the venom samples exhibited the ability to hydrolyse Abz-FLRRV-EDDnp and dynorphin 1-13 substrates. These activities were inhibited by 1,10-phenanthroline but not by PMSF, indicating the presence of metalloproteinases in the Tityus spp. venoms. The venom peptidase activity on Abz-FLRRV-EDDnp and on dynorphin 1-13 was partially inhibited by therapeutic Brazilian anti-scorpion and anti-arachnidic antivenoms. Dynorphin 1-13 (YGGFLRRIRPKLK) contains two scissile bonds between the residues Leu-Arg and Arg-Arg that are susceptible to cleavage by the Tityus venom metallopeptidase(s). Their cleavage releases leu-enkephalin, an important bioactive peptide. The detection of metalloproteinase(s) with specificity for both dynorphin 1-13 degradation and leu-enkephalin releasing can be important for the mechanistic understanding of hypotension and bradycardia induction in cases of scorpion stings, whereas hyaluronidases might contribute to the diffusion of the toxins present in these venoms. Furthermore, the limited inhibition of the toxic enzymatic activities by commercial antivenoms illustrates the necessity of improvements in current antivenom preparation.


Molecular Immunology | 2010

Human complement activation and anaphylatoxins generation induced by snake venom toxins from Bothrops genus

Giselle Pidde-Queiroz; Maria de Fátima D. Furtado; Carlos F. Filgueiras; Lucas Alves Pessoa; Mônica Spadafora-Ferreira; Carmen W. van den Berg; Denise V. Tambourgi

Snake venoms are a complex mixture of components, which have a wide range of actions both on prey and human victims. The genus Bothrops causes the vast majority of snakebites in Central and South America, being responsible for 80% of snake envenomations in Brazil. Envenomations are characterized by prominent local effects, including oedema, haemorrhage and necrosis, which can lead to permanent disability. Systemic manifestations such as haemorrhage, coagulopathy, shock and acute renal failure may also occur. In the present study we have investigated the action of venoms from 19 species of snakes from the genus Bothrops, occurring in Brazil, on the complement system in in vitro studies. All venoms were able to activate the classical complement pathway, in the absence of sensitizing antibody. This activation was in part associated with the cleavage of C1-Inhibitor by proteases present in these venoms, which disrupts complement activation control. No modification of the membrane bound complement regulators, such as DAF, CR1 and CD59 was detected, after treatment of human erythrocytes with the snake venoms. Some of the Bothrops venoms were also able to activate alternative and lectin pathways, as measured in haemolytic and ELISA assays. C3a, C4a and C5a were generated in sera treated with the venoms, not only through C-activation, but also by the direct cleavage of complement components, as determined using purified C3 and C4. Metallo- and/or serine-protease inhibitors prevented cleavage of C3 and C4. These results suggest that Bothrops venoms can activate the complement system, generating a large amount of anaphylatoxins, which may play an important role in the inflammatory process presented in humans after snake envenomations, and they may also assist, due to their vasodilatory effects, to enhance the spreading of other venom components.


BMC Immunology | 2012

Micrurus snake venoms activate human complement system and generate anaphylatoxins

Gabriela D. Tanaka; Giselle Pidde-Queiroz; Maria de Fátima D. Furtado; Carmen W. van den Berg; Denise V. Tambourgi

BackgroundThe genus Micrurus, coral snakes (Serpentes, Elapidae), comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity.ResultsIn the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s) present in the venoms, which disrupts complement activation control.ConclusionMicrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process.


PLOS Neglected Tropical Diseases | 2013

P-I snake venom metalloproteinase is able to activate the complement system by direct cleavage of central components of the cascade.

Giselle Pidde-Queiroz; Fabio Carlos Magnoli; Fernanda C.V. Portaro; Solange M.T. Serrano; Aline Lopes; Adriana Franco Paes Leme; Carmen W. van den Berg; Denise V. Tambourgi

Background Snake Venom Metalloproteinases (SVMPs) are amongst the key enzymes that contribute to the high toxicity of snake venom. We have recently shown that snake venoms from the Bothrops genus activate the Complement system (C) by promoting direct cleavage of C-components and generating anaphylatoxins, thereby contributing to the pathology and spread of the venom. The aim of the present study was to isolate and characterize the C-activating protease from Bothrops pirajai venom. Results Using two gel-filtration chromatography steps, a metalloproteinase of 23 kDa that activates Complement was isolated from Bothrops pirajai venom. The mass spectrometric identification of this protein, named here as C-SVMP, revealed peptides that matched sequences from the P-I class of SVMPs. C-SVMP activated the alternative, classical and lectin C-pathways by cleaving the α-chain of C3, C4 and C5, thereby generating anaphylatoxins C3a, C4a and C5a. In vivo, C-SVMP induced consumption of murine complement components, most likely by activation of the pathways and/or by direct cleavage of C3, leading to a reduction of serum lytic activity. Conclusion We show here that a P-I metalloproteinase from Bothrops pirajai snake venom activated the Complement system by direct cleavage of the central C-components, i.e., C3, C4 and C5, thereby generating biologically active fragments, such as anaphylatoxins, and by cleaving the C1-Inhibitor, which may affect Complement activation control. These results suggest that direct complement activation by SVMPs may play a role in the progression of symptoms that follow envenomation.


PLOS Neglected Tropical Diseases | 2012

Premolis semirufa (Walker, 1856) envenomation, disease affecting rubber tappers of the Amazon: searching for caterpillar-bristles toxic components.

Isadora Maria Villas-Boas; Rute M. Gonçalves-de-Andrade; Giselle Pidde-Queiroz; Suely Lucia Muro Rais Assaf; Fernanda C.V. Portaro; Osvaldo Augusto Sant'Anna; Carmen W. van den Berg; Denise V. Tambourgi

Background The caterpillar of the moth Premolis semirufa (Lepidoptera: Arctiidae), commonly named Pararama, is endemic of the Amazon basin. Accidental contact with these caterpillar bristles causes local symptoms such as intense heat, pain, edema and itching which last for three to seven days; however, after multiples contacts, it may induce joint-space narrowing and bone alteration, as well as degeneration of the articular cartilage and immobilization of the affected joints. Specific treatment for this disease does not exist, but corticosteroids are frequently administered. Despite of the public health hazard of Premolis semirufa caterpillar poisoning, little is known about the nature of the toxic components involved in the induction of the pathology. Methodology/Principal Findings Here we have investigated the biological and immunochemical characteristics of the caterpillars bristles components. Analysis of the bristles extract in in vitro assays revealed the presence of proteolytic and hyaluronidase activities but no phospholipase A2 activity. In vivo, it was observed that the bristles extract is not lethal but can induce an intense inflammatory process, characterized by the presence of neutrophils in the paw tissues of injected mice. Furthermore, the bristles components stimulated an intense and specific antibody response but autoantibodies such as anti-DNA or anti-collagen type II were not detected. Conclusion The results suggest that Premolis semirufa caterpillar bristles secretion contains a mixture of different enzymes that may act together in the generation and development of the clinical manifestations of the Pararama envenomation. Moreover, the high immunogenicity of the caterpillar bristles components, as shown by the generation of high antibody titers, may also contribute to the induction and establishment of the inflammatory disease.


BMC Evolutionary Biology | 2015

Adaptive evolution in the toxicity of a spider’s venom enzymes

Aurélio Pedroso; Sergio Russo Matioli; Mario Tyago Murakami; Giselle Pidde-Queiroz; Denise V. Tambourgi

BackgroundSphingomyelinase D is the main toxin present in the venom of Loxosceles spiders. Several isoforms present in these venoms can be structurally classified in two groups. Class I Sphingomyelinase D contains a single disulphide bridge and variable loop. Class II Sphingomyelinase D presents an additional intrachain disulphide bridge that links a flexible loop with a catalytic loop. These classes exhibit differences in their toxic potential. In this paper we address the distribution of the structural classes of SMase D within and among species of spiders and also their evolutionary origin by means of phylogenetic analyses. We also conducted tests to assess the action of natural selection in their evolution combined to structural modelling of the affected sites.ResultsThe majority of the Class I enzymes belong to the same clade, which indicates a recent evolution from a single common ancestor. Positively selected sites are located on the catalytic interface, which contributes to a distinct surface charge distribution between the classes. Sites that may prevent the formation of an additional bridge were found in Class I enzymes.ConclusionsThe evolution of Sphingomyelinase D has been driven by natural selection toward an increase in noxiousness, and this might help explain the toxic variation between classes.


PLOS ONE | 2016

Characterization of a Gene Coding for the Complement System Component FB from Loxosceles laeta Spider Venom Glands.

Daniela Tiemi Myamoto; Giselle Pidde-Queiroz; Rute M. Gonçalves-de-Andrade; Aurélio Pedroso; Carmen W. van den Berg; Denise V. Tambourgi

The human complement system is composed of more than 30 proteins and many of these have conserved domains that allow tracing the phylogenetic evolution. The complement system seems to be initiated with the appearance of C3 and factor B (FB), the only components found in some protostomes and cnidarians, suggesting that the alternative pathway is the most ancient. Here, we present the characterization of an arachnid homologue of the human complement component FB from the spider Loxosceles laeta. This homologue, named Lox-FB, was identified from a total RNA L. laeta spider venom gland library and was amplified using RACE-PCR techniques and specific primers. Analysis of the deduced amino acid sequence and the domain structure showed significant similarity to the vertebrate and invertebrate FB/C2 family proteins. Lox-FB has a classical domain organization composed of a control complement protein domain (CCP), a von Willebrand Factor domain (vWFA), and a serine protease domain (SP). The amino acids involved in Mg2+ metal ion dependent adhesion site (MIDAS) found in the vWFA domain in the vertebrate C2/FB proteins are well conserved; however, the classic catalytic triad present in the serine protease domain is not conserved in Lox-FB. Similarity and phylogenetic analyses indicated that Lox-FB shares a major identity (43%) and has a close evolutionary relationship with the third isoform of FB-like protein (FB-3) from the jumping spider Hasarius adansoni belonging to the Family Salcitidae.


Immunobiology | 2016

Characterization of the gene encoding component C3 of the complement system from the spider Loxosceles laeta venom glands: Phylogenetic implications.

D.T. Myamoto; Giselle Pidde-Queiroz; Aurélio Pedroso; Rute M. Gonçalves-de-Andrade; C.W. van den Berg; D.V. Tambourgi

A transcriptome analysis of the venom glands of the spider Loxosceles laeta, performed by our group, in a previous study (Fernandes-Pedrosa et al., 2008), revealed a transcript with a sequence similar to the human complement component C3. Here we present the analysis of this transcript. cDNA fragments encoding the C3 homologue (Lox-C3) were amplified from total RNA isolated from the venom glands of L. laeta by RACE-PCR. Lox-C3 is a 5178 bps cDNA sequence encoding a 190kDa protein, with a domain configuration similar to human C3. Multiple alignments of C3-like proteins revealed two processing sites, suggesting that Lox-C3 is composed of three chains. Furthermore, the amino acids consensus sequences for the thioester was found, in addition to putative sequences responsible for FB binding. The phylogenetic analysis showed that Lox-C3 belongs to the same group as two C3 isoforms from the spider Hasarius adansoni (Family Salcitidae), showing 53% homology with these. This is the first characterization of a Loxosceles cDNA sequence encoding a human C3 homologue, and this finding, together with our previous finding of the expression of a FB-like molecule, suggests that this spider species also has a complement system. This work will help to improve our understanding of the innate immune system in these spiders and the ancestral structure of C3.


PLOS ONE | 2015

A serine protease isolated from the bristles of the Amazonic caterpillar, Premolis semirufa, is a potent complement system activator.

Isadora Maria Villas Boas; Giselle Pidde-Queiroz; Fabio Carlos Magnoli; Rute M. Gonçalves-de-Andrade; Carmen W. van den Berg; Denise V. Tambourgi

Background The caterpillar of the moth Premolis semirufa, commonly named pararama, is found in the Brazilian Amazon region. Accidental contact with the caterpillar bristles causes an intense itching sensation, followed by symptoms of an acute inflammation, which last for three to seven days after the first incident. After multiple accidents a chronic inflammatory reaction, called “Pararamose”, characterized by articular synovial membrane thickening with joint deformities common to chronic synovitis, frequently occurs. Although complement mediated inflammation may aid the host defense, inappropriate or excessive activation of the complement system and generation of anaphylatoxins can lead to inflammatory disorder and pathologies. The aim of the present study was to evaluate, in vitro, whether the Premolis semirufa’s bristles extract could interfere with the human complement system. Results The bristles extract was able to inhibit the haemolytic activity of the alternative pathway, as well as the activation of the lectin pathway, but had no effect on the classical pathway, and this inhibition seemed to be caused by activation and consumption of complement components. The extract induced the production of significant amounts of all three anaphylatoxins, C3a, C4a and C5a, promoted direct cleavage of C3, C4 and C5 and induced a significant generation of terminal complement complexes in normal human serum. By using molecular exclusion chromatography, a serine protease of 82 kDa, which activates complement, was isolated from P. semirufa bristles extract. The protease, named here as Ps82, reduced the haemolytic activity of the alternative and classical pathways and inhibited the lectin pathway. In addition, Ps82 induced the cleavage of C3, C4 and C5 and the generation of C3a and C4a in normal human serum and it was capable to cleave human purified C5 and generate C5a. The use of Phenanthroline, metalloprotease inhibitor, in the reactions did not significantly interfere with the activity of the Ps82, whereas the presence of PMSF, serine protease inhibitor, totally blocked the activity. Conclusion These data show that a serine protease present in the Premolis semirufa’s bristles extract has the ability to activate the complement system, which may contribute to the inflammatory process presented in humans after envenomation.


Archive | 2011

Molecular Cloning, Expression, Function, Structure and Immunoreactivities of a Sphingomyelinase D from Loxosceles adelaida, a Brazilian Brown Spider from Karstic Areas

Denise V. Tambourgi; Giselle Pidde-Queiroz; Rute M. Gonçalves-de-Andrade; Cinthya K. Okamoto; Tiago J. Sobreir; Paulo Sergio Lopes de Oliveira; Mario Tyago Murakami; Carmen W. van den Berg

Loxosceles is the most poisonous spider in Brazil and, at least, three different species of medical importance are known in Brazil (L. intermedia, L. gaucho, L. laeta), with more than 5000 cases of envenomation reported each year. In South Africa, L. parrami and L. spinulosa are responsible for cutaneous loxoscelism (Newlands et al., 1982). In Australia, a cosmopolitan species, L. rufescens, is capable of causing ulceration in humans. In the USA, at least five Loxosceles species, including L. reclusa (brown recluse), L. apachea, L. arizonica, L. unicolor and L. deserta are known to cause numerous incidents (Ginsburg W Gendron, 1990; Bey et al., 1997; Desai et al., 2000). Several studies have indicated that sphingomyelinase D (SMase D) present in the venoms of Loxosceles spiders is the main component responsible for the local and systemic effects observed in loxoscelism (Forrester et al., 1978; Kurpiewski et al., 1981; Tambourgi et al., 1998, 2000, 2002, 2004, 2005, 2007; van den Berg et al., 2002, 2007; Fernandes Pedrosa et al., 2002; Paixao Cavalcanti et al., 2006, Tambourgi et al., 2010). SMases D hydrolyze sphingomyelin resulting in the formation of ceramide-1-phosphate and choline (Forrester et al., 1978; Kurpiewski et al., 1981; Tambourgi et al., 1998) and, in the presence of Mg2+, are able to catalyze the release of choline from lysophosphatidylcholine (van Meeteren et al., 2004). All spider venom SMases D sequenced to date display a significant level of sequence similarity and thus likely possess the same (┙/┚)8 or TIM barrel fold (Murakami et al., 2005, 2006). Based on sequence identity, biochemical activity and molecular modelling, a scheme for classification of spider venom SMases D was proposed (Murakami et al., 2006). The class 1 enzymes include SMase I and H13, SMases D from L. laeta, which possess a single disulphide bridge and contain an extended hydrophobic loop or variable loop (Murakami et

Collaboration


Dive into the Giselle Pidde-Queiroz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.V. Tambourgi

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emerson José Venancio

Universidade Estadual de Londrina

View shared research outputs
Researchain Logo
Decentralizing Knowledge