Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gitte Lund Christensen is active.

Publication


Featured researches published by Gitte Lund Christensen.


Molecular & Cellular Proteomics | 2010

Quantitative Phosphoproteomics Dissection of Seven-transmembrane Receptor Signaling Using Full and Biased Agonists

Gitte Lund Christensen; Christian D. Kelstrup; Christina Lyngsø; Uzma Sarwar; Rikke Bøgebo; Søren Paludan Sheikh; Steen Gammeltoft; J. Olsen; Jakob Lerche Hansen

Seven-transmembrane receptors (7TMRs) signal through the well described heterotrimeric G proteins but can also activate G protein-independent signaling pathways of which the impact and complexity are less understood. The angiotensin II type 1 receptor (AT1R) is a prototypical 7TMR and an important drug target in cardiovascular diseases. “Biased agonists” with intrinsic “functional selectivity” that simultaneously blocks Gαq protein activity and activates G protein-independent pathways of the AT1R confer important perspectives in treatment of cardiovascular diseases. In this study, we performed a global quantitative phosphoproteomics analysis of the AT1R signaling network. We analyzed ligand-stimulated SILAC (stable isotope labeling by amino acids in cell culture) cells by high resolution (LTQ-Orbitrap) MS and compared the phosphoproteomes of the AT1R agonist angiotensin II and the biased agonist [Sar1,Ile4,Ile8]angiotensin II (SII angiotensin II), which only activates the Gαq protein-independent signaling. We quantified more than 10,000 phosphorylation sites of which 1183 were regulated by angiotensin II or its analogue SII angiotensin II. 36% of the AT1R-regulated phosphorylations were regulated by SII angiotensin II. Analysis of phosphorylation site patterns showed a striking distinction between protein kinases activated by Gαq protein-dependent and -independent mechanisms, and we now place protein kinase D as a key protein involved in both Gαq-dependent and -independent AT1R signaling. This study provides substantial novel insight into angiotensin II signal transduction and is the first study dissecting the differences between a full agonist and a biased agonist from a 7TMR on a systems-wide scale. Importantly, it reveals a previously unappreciated diversity and quantity of Gαq protein-independent signaling and uncovers novel signaling pathways. We foresee that the amount and diversity of G protein-independent signaling may be more pronounced than previously recognized for other 7TMRs as well. Quantitative mass spectrometry is a promising tool for evaluation of the signaling properties of biased agonists to other receptors in the future.


British Journal of Pharmacology | 2011

Angiotensin II type 1 receptor signalling regulates microRNA differentially in cardiac fibroblasts and myocytes

Pia L Jeppesen; Gitte Lund Christensen; Mikael Schneider; A.Y. Nossent; Hasse Brønnum Jensen; Ditte Caroline Andersen; Tilde Eskildsen; Steen Gammeltoft; Jakob Lerche Hansen; Søren Paludan Sheikh

BACKGROUND AND PURPOSE The angiotensin II type 1 receptor (AT1R) is a key regulator of blood pressure and cardiac contractility and is profoundly involved in development of cardiac disease. Since several microRNAs (miRNAs) have been implicated in cardiac disease, we determined whether miRNAs might be regulated by AT1R signals in a Gαq/11‐dependent or ‐independent manner.


Cytokine & Growth Factor Reviews | 2016

Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism

Lovorka Grgurevic; Gitte Lund Christensen; Tim J. Schulz; Slobodan Vukicevic

Bore morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)-β superfamily, a group of secreted proteins that regulate embryonic development. This review summarizes the effects of BMPs on physiological processes not exclusively linked to the musculoskeletal system. Specifically, we focus on the involvement of BMPs in inflammatory disorders, e.g. fibrosis, inflammatory bowel disease, anchylosing spondylitis, rheumatoid arthritis. Moreover, we discuss the role of BMPs in the context of vascular disorders, and explore the role of these signalling proteins in iron homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been implicated in pancreas development as well as control of adult glucose homeostasis. Lastly, we review the recently recognized role of BMPs in brown adipose tissue formation and their consequences for energy expenditure and adiposity. In summary, BMPs play a pivotal role in metabolism beyond their role in skeletal homeostasis. However, increased understanding of these pleiotropic functions also highlights the necessity of tissue-specific strategies when harnessing BMP action as a therapeutic target.


Diabetologia | 2014

Inhibition of beta cell growth and function by bone morphogenetic proteins

Christine Bruun; Gitte Lund Christensen; Marie L. B. Jacobsen; Marianne B. Kanstrup; Pernille Rønde Jensen; Helle Fjordvang; Thomas Mandrup-Poulsen; Nils Billestrup

Aims/hypothesisImpairment of beta cell mass and function is evident in both type 1 and type 2 diabetes. In healthy physiological conditions pancreatic beta cells adapt to the bodys increasing insulin requirements by proliferation and improved function. We hypothesised that during the development of diabetes, there is an increase in the expression of inhibitory factors that prevent the beta cells from adapting to the increased need for insulin. We evaluated the effects of bone morphogenetic protein (BMP) 2 and -4 on beta cells.MethodsThe effects of BMP2 and -4 on beta cell proliferation, apoptosis, gene expression and insulin release were studied in isolated islets of Langerhans from rats, mice and humans. The expression of BMPs was analysed by immunocytochemistry and real-time PCR. The role of endogenous BMP was investigated using a soluble and neutralising form of the BMP receptor 1A.ResultsBMP2 and -4 were found to inhibit basal as well as growth factor-stimulated proliferation of primary beta cells from rats and mice. Bmp2 and Bmp4 mRNA and protein were expressed in islets and regulated by inflammatory cytokines. Neutralisation of endogenous BMP activity resulted in enhanced proliferation of rodent beta cells. The expression of Id mRNAs was induced by BMP4 in rat and human islets. Finally, glucose-induced insulin secretion was significantly impaired in rodent and human islets pre-treated with BMP4, and inhibition of BMP activity resulted in enhanced insulin release.Conclusions/interpretationThese data show that BMP2 and -4 exert inhibitory actions on beta cells in vitro and suggest that BMPs exert regulatory roles of beta cell growth and function.


Journal of Interferon and Cytokine Research | 2016

Inflammatory Cytokines Stimulate Bone Morphogenetic Protein-2 Expression and Release from Pancreatic Beta Cells

Adriana Ibarra Urizar; Josefine Friberg; Dan Ploug Christensen; Gitte Lund Christensen; Nils Billestrup

The proinflammatory cytokines interleukin-1 beta (IL-1β) and interferon gamma (IFN-γ) play important roles in the progressive loss of beta-cell mass and function during development of both type 1 and type 2 diabetes. We have recently showed that bone morphogenetic protein (BMP)-2 and -4 are expressed in pancreatic islets and inhibit beta-cell growth and function. In this study, we describe that IL-1β and IFN-γ induce the expression of BMP-2 suggesting a possible role for BMP-2 in mediating the effects of IL-1β and IFN-γ on beta-cell apoptosis and dysfunction. IL-1β increased BMP-2 mRNA levels 6- and 3-fold in isolated islets of Langerhans from neonatal rat and human. Downstream target genes of the BMP pathway were also increased by cytokine treatment and could be reversed by neutralization of endogenous BMP activity. Nuclear factor kappa B- (NFκB) binding sites were identified in the rat BMP-2 promoter, and reporter assays verified the role of NFκB in cytokine-induced BMP-2 expression. Electrophoretic mobility shift assay and chromatin immunoprecipitation assays confirmed NFκB binding to BMP-2 promoter upon IL-1β stimulation in beta cells. In conclusion, we suggest that NFκB stimulates BMP-2 mRNA expression in rat and human beta cells upon cytokine exposure.


Diabetologia | 2015

Bone morphogenetic protein 4 inhibits insulin secretion from rodent beta cells through regulation of calbindin1 expression and reduced voltage-dependent calcium currents

Gitte Lund Christensen; Maria L. B. Jacobsen; A. Wendt; Inês G. Mollet; Josefine Friberg; Klaus Stensgaard Frederiksen; Michael Meyer; Christine Bruun; Lena Eliasson; Nils Billestrup

Aims/hypothesisType 2 diabetes is characterised by progressive loss of pancreatic beta cell mass and function. Therefore, it is of therapeutic interest to identify factors with the potential to improve beta cell proliferation and insulin secretion. Bone morphogenetic protein 4 (BMP4) expression is increased in diabetic animals and BMP4 reduces glucose-stimulated insulin secretion (GSIS). Here, we investigate the molecular mechanism behind this inhibition.MethodsBMP4-mediated inhibition of GSIS was investigated in detail using single cell electrophysiological measurements and live cell Ca2+ imaging. BMP4-mediated gene expression changes were investigated by microarray profiling, quantitative PCR and western blotting.ResultsProlonged exposure to BMP4 reduced GSIS from rodent pancreatic islets. This inhibition was associated with decreased exocytosis due to a reduced Ca2+ current through voltage-dependent Ca2+ channels. To identify proteins involved in the inhibition of GSIS, we investigated global gene expression changes induced by BMP4 in neonatal rat pancreatic islets. Expression of the Ca2+-binding protein calbindin1 was significantly induced by BMP4. Overexpression of calbindin1 in primary islet cells reduced GSIS, and the effect of BMP4 on GSIS was lost in islets from calbindin1 (Calb1) knockout mice.Conclusions/interpretationWe found BMP4 treatment to markedly inhibit GSIS from rodent pancreatic islets in a calbindin1-dependent manner. Calbindin1 is suggested to mediate the effect of BMP4 by buffering Ca2+ and decreasing Ca2+ channel activity, resulting in diminished insulin exocytosis. Both BMP4 and calbindin1 are potential pharmacological targets for the treatment of beta cell dysfunction.


Journal of Molecular Endocrinology | 2014

CRFR1 activation protects against cytokine-induced β-cell death

Lykke Blaabjerg; Gitte Lund Christensen; Masahito Matsumoto; Talitha van der Meulen; Mark O. Huising; Nils Billestrup; Wylie Vale

During the development of diabetes β-cells are exposed to elevated concentrations of proinflammatory cytokines, TNFα and IL1β, which in vitro induce β-cell death. The class B G-protein-coupled receptors (GPCRs): corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 are expressed in pancreatic islets. As downstream signaling by other class B GPCRs can protect against cytokine-induced β-cell apoptosis, we evaluated the protective potential of CRFR activation in β-cells in a pro-inflammatory setting. CRFR1/CRFR2 ligands activated AKT and CRFR1 signaling and reduced apoptosis in human islets. In rat and mouse insulin-secreting cell lines (INS-1 and MIN6), CRFR1 agonists upregulated insulin receptor substrate 2 (IRS2) expression, increased AKT activation, counteracted the cytokine-mediated decrease in BAD phosphorylation, and inhibited apoptosis. The anti-apoptotic signaling was dependent on prolonged exposure to corticotropin-releasing factor family peptides and followed PKA-mediated IRS2 upregulation. This indicates that CRFR signaling counteracts proinflammatory cytokine-mediated apoptotic pathways through upregulation of survival signaling in β-cells. Interestingly, CRFR signaling also counteracted basal apoptosis in both cultured INS-1 cells and intact human islets.


Diabetes | 2016

Ionizing Radiation Potentiates High Fat Diet-Induced Insulin Resistance and Reprograms Skeletal Muscle and Adipose Progenitor Cells

Vibe Nylander; Lars Roed Ingerslev; Emil Andersen; Odile Fabre; Christian Garde; Morten Rasmussen; Kiymet Citirikkaya; Josephine Bæk; Gitte Lund Christensen; Marianne C. Aznar; Lena Specht; David Simar; Romain Barrès

Exposure to ionizing radiation increases the risk of chronic metabolic disorders such as insulin resistance and type 2 diabetes later in life. We hypothesized that irradiation reprograms the epigenome of metabolic progenitor cells, which could account for impaired metabolism after cancer treatment. C57Bl/6 mice were treated with a single dose of irradiation and subjected to high-fat diet (HFD). RNA sequencing and reduced representation bisulfite sequencing were used to create transcriptomic and epigenomic profiles of preadipocytes and skeletal muscle satellite cells collected from irradiated mice. Mice subjected to total body irradiation showed alterations in glucose metabolism and, when challenged with HFD, marked hyperinsulinemia. Insulin signaling was chronically disrupted in skeletal muscle and adipose progenitor cells collected from irradiated mice and differentiated in culture. Epigenomic profiling of skeletal muscle and adipose progenitor cells from irradiated animals revealed substantial DNA methylation changes, notably for genes regulating the cell cycle, glucose/lipid metabolism, and expression of epigenetic modifiers. Our results show that total body irradiation alters intracellular signaling and epigenetic pathways regulating cell proliferation and differentiation of skeletal muscle and adipose progenitor cells and provide a possible mechanism by which irradiation used in cancer treatment increases the risk for metabolic disease later in life.


Molecular & Cellular Proteomics | 2018

Characterization of the Molecular Mechanisms Underlying Glucose Stimulated Insulin Secretion from Isolated Pancreatic β-cells Using Post-translational Modification Specific Proteomics (PTMomics)

Taewook Kang; Pia Jensen; Honggang Huang; Gitte Lund Christensen; Nils Billestrup; Martin R. Larsen

Normal pancreatic islet β-cells (PBCs) abundantly secrete insulin in response to elevated blood glucose levels, in order to maintain an adequate control of energy balance and glucose homeostasis. However, the molecular mechanisms underlying the insulin secretion are unclear. Improving our understanding of glucose-stimulated insulin secretion (GSIS) mechanisms under normal conditions is a prerequisite for developing better interventions against diabetes. Here, we aimed at identifying novel signaling pathways involved in the initial release of insulin from PBCs after glucose stimulation using quantitative strategies for the assessment of phosphorylated proteins and sialylated N-linked (SA) glycoproteins. Islets of Langerhans derived from newborn rats with a subsequent 9–10 days of maturation in vitro were stimulated with 20 mm glucose for 0 min (control), 5 min, 10 min, and 15 min. The isolated islets were subjected to time-resolved quantitative phosphoproteomics and sialiomics using iTRAQ-labeling combined with enrichment of phosphorylated peptides and formerly SA glycopeptides and high-accuracy LC-MS/MS. Using bioinformatics we analyzed the functional signaling pathways during GSIS, including well-known insulin secretion pathways. Furthermore, we identified six novel activated signaling pathways (e.g. agrin interactions and prolactin signaling) at 15 min GSIS, which may increase our understanding of the molecular mechanism underlying GSIS. Moreover, we validated some of the regulated phosphosites by parallel reaction monitoring, which resulted in the validation of eleven new phosphosites significantly regulated on GSIS. Besides protein phosphorylation, alteration in SA glycosylation was observed on several surface proteins on brief GSIS. Interestingly, proteins important for cell-cell interaction, cell movement, cell-ECM interaction and Focal Adhesion (e.g. integrins, semaphorins, and plexins) were found regulated at the level of sialylation, but not in protein expression. Collectively, we believe that this comprehensive Proteomics and PTMomics survey of signaling pathways taking place during brief GSIS of primary PBCs is contributing to understanding the complex signaling underlying GSIS.


PLOS ONE | 2014

Predicting kinase activity in angiotensin receptor phosphoproteomes based on sequence-motifs and interactions

Rikke Bøgebo; Heiko Horn; J. Olsen; Steen Gammeltoft; Lars Juhl Jensen; Jakob Lerche Hansen; Gitte Lund Christensen

Recent progress in the understanding of seven-transmembrane receptor (7TMR) signalling has promoted the development of a new generation of pathway selective ligands. The angiotensin II type I receptor (AT1aR) is one of the most studied 7TMRs with respect to selective activation of the β-arrestin dependent signalling. Two complimentary global phosphoproteomics studies have analyzed the complex signalling induced by the AT1aR. Here we integrate the data sets from these studies and perform a joint analysis using a novel method for prediction of differential kinase activity from phosphoproteomics data. The method builds upon NetworKIN, which applies sophisticated linear motif analysis in combination with contextual network modelling to predict kinase-substrate associations with high accuracy and sensitivity. These predictions form the basis for subsequently nonparametric statistical analysis to identify likely activated kinases. This suggested that AT1aR-dependent signalling activates 48 of the 285 kinases detected in HEK293 cells. Of these, Aurora B, CLK3 and PKG1 have not previously been described in the pathway whereas others, such as PKA, PKB and PKC, are well known. In summary, we have developed a new method for kinase-centric analysis of phosphoproteomes to pinpoint differential kinase activity in large-scale data sets.

Collaboration


Dive into the Gitte Lund Christensen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Olsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge