Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gitte Neubauer is active.

Publication


Featured researches published by Gitte Neubauer.


Nature | 2002

Functional organization of the yeast proteome by systematic analysis of protein complexes

Anne-Claude Gavin; Markus Bösche; Roland Krause; Paola Grandi; Martina Marzioch; Andreas Bauer; Jörg Schultz; Jens Rick; Anne-Marie Michon; Cristina-Maria Cruciat; Marita Remor; Christian Höfert; Malgorzata Schelder; Miro Brajenovic; Heinz Ruffner; Alejandro Merino; Karin Klein; Manuela Hudak; David Dickson; Tatjana Rudi; Volker Gnau; Angela Bauch; Sonja Bastuck; Bettina Huhse; Christina Leutwein; Marie-Anne Heurtier; Richard R. Copley; Angela Edelmann; Erich Querfurth; Vladimir Rybin

Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.


Nature | 2006

Proteome survey reveals modularity of the yeast cell machinery

Anne-Claude Gavin; Patrick Aloy; Paola Grandi; Roland Krause; Markus Boesche; Martina Marzioch; Christina Rau; Lars Juhl Jensen; Sonja Bastuck; Birgit Dümpelfeld; Angela Edelmann; Marie-Anne Heurtier; Verena Hoffman; Christian Hoefert; Karin Klein; Manuela Hudak; Anne-Marie Michon; Malgorzata Schelder; Markus Schirle; Marita Remor; Tatjana Rudi; Sean D. Hooper; Andreas Bauer; Tewis Bouwmeester; Georg Casari; Gerard Drewes; Gitte Neubauer; Jens Rick; Bernhard Kuster; Peer Bork

Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes, of which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a diversification of potential functions. Support for this modular organization of the proteome comes from integration with available data on expression, localization, function, evolutionary conservation, protein structure and binary interactions. This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.


Nature Cell Biology | 2004

A physical and functional map of the human TNF-α/NF-κB signal transduction pathway

Tewis Bouwmeester; Angela Bauch; Heinz Ruffner; Pierre-Olivier Angrand; Giovanna Bergamini; Karen Croughton; Cristina Cruciat; Dirk Eberhard; Julien Gagneur; Sonja Ghidelli; Carsten Hopf; Bettina Huhse; Raffaella Mangano; Anne-Marie Michon; Markus Schirle; Judith Schlegl; Markus Schwab; Martin Stein; Andreas Bauer; Georg Casari; Gerard Drewes; Anne-Claude Gavin; David B. Jackson; Gerard Joberty; Gitte Neubauer; Jens Rick; Bernhard Kuster; Giulio Superti-Furga

Signal transduction pathways are modular composites of functionally interdependent sets of proteins that act in a coordinated fashion to transform environmental information into a phenotypic response. The pro-inflammatory cytokine tumour necrosis factor (TNF)-α triggers a signalling cascade, converging on the activation of the transcription factor NF-κB, which forms the basis for numerous physiological and pathological processes. Here we report the mapping of a protein interaction network around 32 known and candidate TNF-α/NF-κB pathway components by using an integrated approach comprising tandem affinity purification, liquid-chromatography tandem mass spectrometry, network analysis and directed functional perturbation studies using RNA interference. We identified 221 molecular associations and 80 previously unknown interactors, including 10 new functional modulators of the pathway. This systems approach provides significant insight into the logic of the TNF-α/NF-κB pathway and is generally applicable to other pathways relevant to human disease.


Nature Biotechnology | 2007

Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors

Marcus Bantscheff; Dirk Eberhard; Yann Abraham; Sonja Bastuck; Markus Boesche; Scott Hobson; Toby Mathieson; Jessica Perrin; Manfred Raida; Christina Rau; Valerie Reader; Gavain Sweetman; Andreas Bauer; Tewis Bouwmeester; Carsten Hopf; Ulrich Kruse; Gitte Neubauer; Nigel Ramsden; Jens Rick; Bernhard Kuster; Gerard Drewes

We describe a chemical proteomics approach to profile the interaction of small molecules with hundreds of endogenously expressed protein kinases and purine-binding proteins. This subproteome is captured by immobilized nonselective kinase inhibitors (kinobeads), and the bound proteins are quantified in parallel by mass spectrometry using isobaric tags for relative and absolute quantification (iTRAQ). By measuring the competition with the affinity matrix, we assess the binding of drugs to their targets in cell lysates and in cells. By mapping drug-induced changes in the phosphorylation state of the captured proteome, we also analyze signaling pathways downstream of target kinases. Quantitative profiling of the drugs imatinib (Gleevec), dasatinib (Sprycel) and bosutinib in K562 cells confirms known targets including ABL and SRC family kinases and identifies the receptor tyrosine kinase DDR1 and the oxidoreductase NQO2 as novel targets of imatinib. The data suggest that our approach is a valuable tool for drug discovery.


Nature Genetics | 1998

Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex

Gitte Neubauer; Angus King; Juri Rappsilber; Cinzia Calvio; Mark Watson; Paul Ajuh; Judith E. Sleeman; Angus I. Lamond; Matthias Mann

Many important cell mechanisms are carried out and regulated by multi-protein complexes, for example, transcription and RNA processing machinery, receptor complexes and cytoskeletal structures. Most of these complexes remain only partially characterized due to the difficulty of conventional protein analysis methods. The rapid expansion of DNA sequence databases now provides whole or partial gene sequences of model organisms, and recent advances in protein microcharacterization via mass spectrometry allow the possibility of linking these DNA sequences to the proteins in functional complexes. This approach has been demonstrated in organisms whose genomes have been sequenced, such as budding yeast. Here we report the first characterization of an entire mammalian multi-protein complex using these methods. The machinery that removes introns from mRNA precursors — the spliceosome — is a large multi-protein complex. Approximately half of the components excised from a two-dimensional gel separation of the spliceosome were found in protein sequence databases. Using nanoelectrospray mass spectrometry, the remainder were identified and cloned using public expressed sequence tag (EST) databases. Existing EST databases are thus already sufficiently complete to allow rapid characterization of large mammalian protein complexes via mass spectrometry.


Nature Biotechnology | 2011

Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes

Marcus Bantscheff; Carsten Hopf; Mikhail M. Savitski; Antje Dittmann; Paola Grandi; Anne-Marie Michon; Judith Schlegl; Yann Abraham; Isabelle Becher; Giovanna Bergamini; Markus Boesche; Manja Delling; Birgit Dümpelfeld; Dirk Eberhard; Carola Huthmacher; Toby Mathieson; Daniel Poeckel; Valerie Reader; Katja Strunk; Gavain Sweetman; Ulrich Kruse; Gitte Neubauer; Nigel Ramsden; Gerard Drewes

The development of selective histone deacetylase (HDAC) inhibitors with anti-cancer and anti-inflammatory properties remains challenging in large part owing to the difficulty of probing the interaction of small molecules with megadalton protein complexes. A combination of affinity capture and quantitative mass spectrometry revealed the selectivity with which 16 HDAC inhibitors target multiple HDAC complexes scaffolded by ELM-SANT domain subunits, including a novel mitotic deacetylase complex (MiDAC). Inhibitors clustered according to their target profiles with stronger binding of aminobenzamides to the HDAC NCoR complex than to the HDAC Sin3 complex. We identified several non-HDAC targets for hydroxamate inhibitors. HDAC inhibitors with distinct profiles have correspondingly different effects on downstream targets. We also identified the anti-inflammatory drug bufexamac as a class IIb (HDAC6, HDAC10) HDAC inhibitor. Our approach enables the discovery of novel targets and inhibitors and suggests that the selectivity of HDAC inhibitors should be evaluated in the context of HDAC complexes and not purified catalytic subunits.


Nature | 2000

Regulation of intracellular calcium by a signalling complex of IRAG,IP3 receptor and cGMP kinase I|[beta]|

Jens Schlossmann; Aldo Ammendola; Keith Ashman; Xiangang Zong; Andrea Huber; Gitte Neubauer; Ge-Xin Wang; Hans-Dieter Allescher; Michael Korth; Matthias Wilm; Franz Hofmann; Peter Ruth

Calcium release from the endoplasmic reticulum controls a number of cellular processes, including proliferation and contraction of smooth muscle and other cells. Calcium release from inositol 1,4,5-trisphosphate (IP3)-sensitive stores is negatively regulated by binding of calmodulin to the IP3 receptor (IP3R) and the NO/cGMP/cGMP kinase I (cGKI) signalling pathway. Activation of cGKI decreases IP3-stimulated elevations in intracellular calcium, induces smooth muscle relaxation and contributes to the antiproliferative and pro-apoptotic effects of NO/cGMP. Here we show that, in microsomal smooth muscle membranes, cGKIβ phosphorylated the IP3R and cGKIβ, and a protein of relative molecular mass 125,000 which we now identify as the IP3R-associated cGMP kinase substrate (IRAG). These proteins were co-immunoprecipitated by antibodies directed against cGKI, IP3R or IRAG. IRAG was found in many tissues including aorta, trachea and uterus, and was localized perinuclearly after heterologous expression in COS-7 cells. Bradykinin-stimulated calcium release was not affected by the expression of either IRAG or cGKIβ, which we tested in the absence and presence of cGMP. However, calcium release was inhibited after co-expression of IRAG and cGKIβ in the presence of cGMP. These results identify IRAG as an essential NO/cGKI-dependent regulator of IP3-induced calcium release.


Molecular and Cellular Biology | 2002

c-Src-Mediated Phosphorylation of hnRNP K Drives Translational Activation of Specifically Silenced mRNAs

Antje Ostareck-Lederer; Dirk H. Ostareck; Christophe Cans; Gitte Neubauer; Karol Bomsztyk; Giulio Superti-Furga; Matthias W. Hentze

ABSTRACT hnRNPK and hnRNP E1/E2 mediate translational silencing of cellular and viral mRNAs in a differentiation-dependent way by binding to specific regulatory sequences. The translation of 15-lipoxygenase (LOX) mRNA in erythroid precursor cells and of the L2 mRNA of human papilloma virus type 16 (HPV-16) in squamous epithelial cells is silenced when either of these cells is immature and is activated in maturing cells by unknown mechanisms. Here we address the question of how the silenced mRNA can be translationally activated. We show that hnRNP K and the c-Src kinase specifically interact with each other, leading to c-Src activation and tyrosine phosphorylation of hnRNP K in vivo and in vitro. c-Src-mediated phosphorylation reversibly inhibits the binding of hnRNP K to the differentiation control element (DICE) of the LOX mRNA 3′ untranslated region in vitro and specifically derepresses the translation of DICE-bearing mRNAs in vivo. Our results establish a novel role of c-Src kinase in translational gene regulation and reveal a mechanism by which silenced mRNAs can be translationally activated.


RNA | 1998

Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure.

Nicholas J. Watkins; Alexander Gottschalk; Gitte Neubauer; Berthold Kastner; Patrizia Fabrizio; Matthias Mann; Reinhard Lührmann

The eukaryotic nucleolus contains a large number of small nucleolar RNAs (snoRNAs) that are involved in preribosomal RNA (pre-rRNA) processing. The H box/ACA-motif (H/ACA) class of snoRNAs has recently been demonstrated to function as guide RNAs targeting specific uridines in the pre-rRNA for pseudouridine (psi) synthesis. To characterize the protein components of this class of snoRNPs, we have purified the snR42 and snR30 snoRNP complexes by anti-m3G-immunoaffinity and Mono-Q chromatography of Saccharomyces cerevisiae extracts. Sequence analysis of the individual polypeptides demonstrated that the three proteins Gar1p, Nhp2p, and Cbf5p are common to both the snR30 and snR42 complexes. Nhp2p is a highly basic protein that belongs to a family of putative RNA-binding proteins. Cbf5p has recently been demonstrated to be involved in ribosome biogenesis and also shows striking homology with known prokaryotic psi synthases. The presence of Cbf5p, a putative psi synthase in each H/ACA snoRNP suggests that this class of RNPs functions as individual modification enzymes. Immunoprecipitation studies using either anti-Cbf5p antibodies or a hemagglutinin-tagged Nhp2p demonstrated that both proteins are associated with all H/ACA-motif snoRNPs. In vivo depletion of Nhp2p results in a reduction in the steady-state levels of all H/ACA snoRNAs. Electron microscopy of purified snR42 and snR30 particles revealed that these two snoRNPs possess a similar bipartite structure that we propose to be a major structural determining principle for all H/ACA snoRNPs.


The EMBO Journal | 1999

Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6.U5] tri-snRNP.

Alexander Gottschalk; Gitte Neubauer; Josette Banroques; Matthias Mann; Reinhard Lührmann; Patrizia Fabrizio

The 25S [U4/U6·U5] tri‐snRNP (small nuclear ribonucleoprotein) is a central unit of the nuclear pre‐mRNA splicing machinery. The U4, U5 and U6 snRNAs undergo numerous rearrangements in the spliceosome, and knowledge of all of the tri‐snRNP proteins is crucial to the detailed investigation of the RNA dynamics during the spliceosomal cycle. Here we characterize by mass spectrometric methods the proteins of the purified [U4/U6·U5] tri‐snRNP from the yeast Saccharomyces cerevisiae. In addition to the known tri–snRNP proteins (only one, Lsm3p, eluded detection), we identified eight previously uncharacterized proteins. These include four Sm‐like proteins (Lsm2p, Lsm5p, Lsm6p and Lsm7p) and four specific proteins named Snu13p, Dib1p, Snu23p and Snu66p. Snu13p comprises a putative RNA‐binding domain. Interestingly, the Schizosaccharomyces pombe orthologue of Dib1p, Dim1p, was previously assigned a role in cell cycle progression. The role of Snu23p, Snu66p and, additionally, Spp381p in pre‐mRNA splicing was investigated in vitro and/or in vivo. Finally, we show that both tri‐snRNPs and the U2 snRNP are co‐precipitated with protein A‐tagged versions of Snu23p, Snu66p and Spp381p from extracts fractionated by glycerol gradient centrifugation. This suggests that these proteins, at least in part, are also present in a [U2·U4/U6·U5] tetra‐snRNP complex.

Collaboration


Dive into the Gitte Neubauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias Wilm

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Cansfield

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giulio Superti-Furga

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge