Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giulia Corona is active.

Publication


Featured researches published by Giulia Corona.


Nutrients | 2010

Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action

David Vauzour; Ana Rodriguez-Mateos; Giulia Corona; Maria Jose Oruna-Concha; Jeremy P. E. Spencer

Polyphenols are found ubiquitously in plants and their regular consumption has been associated with a reduced risk of a number of chronic diseases, including cancer, cardiovascular disease (CVD) and neurodegenerative disorders. Rather than exerting direct antioxidant effects, the mechanisms by which polyphenols express these beneficial properties appear to involve their interaction with cellular signaling pathways and related machinery that mediate cell function under both normal and pathological conditions. We illustrate that their interactions with two such pathways, the MAP kinase (ERK, JNK, p38) and PI3 kinase/Akt signaling cascades, allow them to impact upon normal and abnormal cell function, thus influencing the cellular processes involved in the initiation and progression of cancer, CVD and neurodegeneration. For example, their ability to activate ERK in neurons leads to a promotion of neuronal survival and cognitive enhancements, both of which influence the progression of Alzheimers disease, whilst ERK activation by polyphenols in vascular endothelial cells influences nitric oxide production, blood pressure and ultimately CVD risk. The main focus of this review is to provide an overview of the role that polyphenols play in the prevention of cancer, cardiovascular disease and neurodegeneration. We present epidemiological data, human intervention study findings, as well as animal and in vitro studies in support of these actions and in each case we consider how their actions at the cellular level may underpin their physiological effects.


Free Radical Research | 2006

The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation.

Giulia Corona; Xenofon Tzounis; M. Assunta Dessì; Monica Deiana; Edward S. Debnam; Francesco Visioli; Jeremy P. E. Spencer

We have conducted a detailed investigation into the absorption, metabolism and microflora-dependent transformation of hydroxytyrosol (HT), tyrosol (TYR) and their conjugated forms, such as oleuropein (OL). Conjugated forms underwent rapid hydrolysis under gastric conditions, resulting in significant increases in the amount of free HT and TYR entering the small intestine. Both HT and TYR transferred across human Caco-2 cell monolayers and rat segments of jejunum and ileum and were subject to classic phase I/II biotransformation. The major metabolites identified were an O-methylated derivative of HT, glucuronides of HT and TYR and a novel glutathionylated conjugate of HT. In contrast, there was no absorption of OL in either model. However, OL was rapidly degraded by the colonic microflora resulting in the formation of HT. Our study provides additional information regarding the breakdown of complex olive oil polyphenols in the GI tract, in particular the stomach and the large intestine.


Neurochemistry International | 2013

Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine

Helene M. Savignac; Giulia Corona; Henrietta Mills; Li Chen; Jeremy P. E. Spencer; George Tzortzis; Philip W.J. Burnet

Highlights • Prebiotic feeding elevated BDNF and NR1subunit mRNAs, in the rat hippocampus.• The GOS prebiotic increased cortical NR1, d-serine, and hippocampal NR2A subunits.• GOS feeding elevated plasma levels of the gut peptide PYY.• GOS plasma increased BDNF release from human SH-SY5Y neuroblastoma cells.• BDNF secretion from cells by GOS plasma was blocked by PYY antisera.


Molecular Nutrition & Food Research | 2009

Hydroxytyrosol inhibits the proliferation of human colon adenocarcinoma cells through inhibition of ERK1/2 and cyclin D1.

Giulia Corona; Monica Deiana; Alessandra Incani; David Vauzour; Maria Assunta Dessì; Jeremy P. E. Spencer

Extra virgin olive oil is rich in phenolic compounds which are believed to exert beneficial effects against many pathological processes, including the development of colon cancer. We show that one of the major polyphenolic constituents of extra virgin olive oil, hydroxytyrosol (HT), exerts strong antiproliferative effects against human colon adenocarcinoma cells via its ability to induce a cell cycle block in G2/M. These antiproliferative effects were preceded by a strong inhibition of extracellular signal-regulated kinase (ERK)1/2 phosphorylation and a downstream reduction of cyclin D1 expression, rather than by inhibition of p38 activity and cyclooxygenase-2 (COX-2) expression. These findings are of particular relevance due to the high colonic concentration of HT compared to the other olive oil polyphenols and may help explain the inverse link between colon cancer and olive oil consumption.


Toxicology and Industrial Health | 2009

Extra virgin olive oil phenolics: absorption, metabolism, and biological activities in the GI tract.

Giulia Corona; Jeremy P. E. Spencer; Maria Assunta Dessì

Olive oil, a typical ingredient of the Mediterranean diet, possesses many beneficial health effects. The biological activities ascribed to olive oil consumption are associated in part to its phenolics constituents, and mainly linked to the direct or indirect antioxidant activity of olive oil phenolics and their metabolites, which are exerted more efficiently in the gastrointestinal (GI) tract, where dietary phenolics are more concentrated when compared to other organs. In this regard, we present a brief overview of the metabolism, biological activities, and anticancer properties of olive oil phenolics in the GI tract.


Archives of Biochemistry and Biophysics | 2010

Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity

David Vauzour; Giulia Corona; Jeremy P. E. Spencer

Parkinsons disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.


Molecular Nutrition & Food Research | 2010

Sulforaphane protects cortical neurons against 5-S-cysteinyl-dopamine-induced toxicity through the activation of ERK1/2, Nrf-2 and the upregulation of detoxification enzymes.

David Vauzour; Maria Buonfiglio; Giulia Corona; Joselita Chirafisi; Katerina Vafeiadou; Cristina Angeloni; Silvana Hrelia; Patrizia Hrelia; Jeremy P. E. Spencer

The degeneration of dopaminergic neurons in the substantia nigra has been linked to the formation of the endogenous neurotoxin 5-S-cysteinyl-dopamine. Sulforaphane (SFN), an isothiocyanate derived from the corresponding precursor glucosinolate found in cruciferous vegetables has been observed to exert a range of biological activities in various cell populations. In this study, we show that SFN protects primary cortical neurons against 5-S-cysteinyl-dopamine induced neuronal injury. Pre-treatment of cortical neurons with SFN (0.01-1 microM) resulted in protection against 5-S-cysteinyl-dopamine-induced neurotoxicity, which peaked at 100 nM. This protection was observed to be mediated by the ability of SFN to modulate the extracellular signal-regulated kinase 1 and 2 and the activation of Kelch-like ECH-associated protein 1/NF-E2-related factor-2 leading to the increased expression and activity of glutathione-S-transferase (M1, M3 and M5), glutathione reductase, thioredoxin reductase and NAD(P)H oxidoreductase 1. These data suggest that SFN stimulates the NF-E2-related factor-2 pathway of antioxidant gene expression in neurons and may protect against neuronal injury relevant to the aetiology of Parkinsons disease.


British Journal of Nutrition | 2011

Absorption and metabolism of olive oil secoiridoids in the small intestine

Joana Pinto; Fátima Paiva-Martins; Giulia Corona; Edward S. Debnam; Maria Jose Oruna-Concha; David Vauzour; Michael H. Gordon; Jeremy P. E. Spencer

The secoiridoids 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA) and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA) account for approximately 55 % of the phenolic content of olive oil and may be partly responsible for its reported human health benefits. We have investigated the absorption and metabolism of these secoiridoids in the upper gastrointestinal tract. Both 3,4-DHPEA-EDA and 3,4-DHPEA-EA were relatively stable under gastric conditions, only undergoing limited hydrolysis. Both secoiridoids were transferred across a human cellular model of the small intestine (Caco-2 cells). However, no glucuronide conjugation was observed for either secoiridoid during transfer, although some hydroxytyrosol and homovanillic alcohol were formed. As Caco-2 cells are known to express only limited metabolic activity, we also investigated the absorption and metabolism of secoiridoids in isolated, perfused segments of the jejunum and ileum. Here, both secoiridoids underwent extensive metabolism, most notably a two-electron reduction and glucuronidation during the transfer across both the ileum and jejunum. Unlike Caco-2 cells, the intact small-intestinal segments contain NADPH-dependent aldo-keto reductases, which reduce the aldehyde carbonyl group of 3,4-DHPEA-EA and one of the two aldeydic carbonyl groups present on 3,4-DHPEA-EDA. These reduced forms are then glucuronidated and represent the major in vivo small-intestinal metabolites of the secoiridoids. In agreement with the cell studies, perfusion of the jejunum and ileum also yielded hydroxytyrosol and homovanillic alcohol and their respective glucuronides. We suggest that the reduced and glucuronidated forms represent novel physiological metabolites of the secoiridoids that should be pursued in vivo and investigated for their biological activity.


Food and Chemical Toxicology | 2010

Protective effect of simple phenols from extravirgin olive oil against lipid peroxidation in intestinal Caco-2 cells

Monica Deiana; Giulia Corona; Alessandra Incani; D Loru; Antonella Rosa; Angela Atzeri; M. Paola Melis; M. Assunta Dessì

Complex polyphenols present in extravirgin olive oil are not directly absorbed, but undergo gastrointestinal biotransformation, increasing the relative amount of tyrosol (TYR) and hydroxytyrosol (HT) entering the small and large intestine. We investigated the capacity of TYR and HT to inhibit the insult of dietary lipid hydroperoxydes on the intestinal mucosa, using cultures of Caco-2, a cell line with enterocyte-like features, and studying the effect of tert-butyl hydroperoxide (TBH) treatment on specific cell membrane lipid targets. The effect of homovanillic alcohol (HVA), metabolite of HT in humans and detected as metabolite of HT in Caco-2 cells, was also evaluated. Exposure to TBH induced a significant increase of the level of MDA, the formation of fatty acid hydroperoxides and 7-ketocholesterol and the loss of α-tocopherol. Pretreatment with both HT and HVA protected Caco-2 cells from oxidative damage: there was no significant detection of oxidation products and the level of α-tocopherol was preserved. Noteworthy, TYR also exerted a protective action against fatty acids degradation. In vitro trials, where the simple phenols were tested during linoleic acid and cholesterol oxidation, gave evidence of a direct scavenging of peroxyl radicals and suggested a hydrogen atom-donating activity.


Food and Chemical Toxicology | 2008

Protective effect of hydroxytyrosol and its metabolite homovanillic alcohol on H2O2 induced lipid peroxidation in renal tubular epithelial cells

Monica Deiana; Alessandra Incani; Antonella Rosa; Giulia Corona; Angela Atzeri; D Loru; M. Paola Melis; M. Assunta Dessì

We investigated the capacity of hydroxytyrosol (HT), 3,4-dihydroxyphenylethanol, and homovanillic alcohol (HVA), 4-hydroxy-3-methoxy-phenylethanol, to inhibit H(2)O(2) induced oxidative damage in LLC-PK1, a porcine kidney epithelial cell line, studying the effect of H(2)O(2) on specific cell membrane lipid targets, unsaturated fatty acids and cholesterol. Exposure to H(2)O(2) induced a significant increase of the level of MDA together with a disruption of the membrane structure, with the loss of unsaturated fatty acids, cholesterol and alpha-tocopherol, and the formation of fatty acids hydroperoxides and 7-ketocholesterol. Pretreatment with HT protected renal cells from oxidative damage: the level of membrane lipids was preserved and there was no significant detection of oxidation products. HVA exerted a comparable activity, thus both HT and HVA were able to prevent in renal cells the lipid peroxidation process that plays a central role in tubular cell injury.

Collaboration


Dive into the Giulia Corona's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Vauzour

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D Loru

University of Cagliari

View shared research outputs
Researchain Logo
Decentralizing Knowledge