Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giulia Freer is active.

Publication


Featured researches published by Giulia Freer.


Clinical Microbiology Reviews | 2001

Molecular Properties, Biology, and Clinical Implications of TT Virus, a Recently Identified Widespread Infectious Agent of Humans

Mauro Bendinelli; Mauro Pistello; Fabrizio Maggi; Claudia Fornai; Giulia Freer; Maria Linda Vatteroni

SUMMARY TT virus (TTV) was first described in 1997 by representational difference analysis of sera from non-A to non-G posttransfusion hepatitis patients and hence intensively investigated as a possible addition to the list of hepatitis-inducing viruses. The TTV genome is a covalently closed single-stranded DNA of approximately 3.8 kb with a number of characteristics typical of animal circoviruses, especially the chicken anemia virus. TTV is genetically highly heterogeneous, which has led investigators to group isolates into numerous genotypes and subtypes and has limited the sensitivity of many PCR assays used for virus detection. The most remarkable feature of TTV is the extraordinarily high prevalence of chronic viremia in apparently healthy people, up to nearly 100% in some countries. The original hypothesis that it might be an important cause of cryptogenic hepatitis has not been borne out, although the possibility that it may produce liver damage under specific circumstances has not been excluded. The virus has not yet been etiologically linked to any other human disease. Thus, TTV should be considered an orphan virus.


Journal of Medical Virology | 2001

TT virus levels in the plasma of infected individuals with different hepatic and extrahepatic pathology

Mauro Pistello; Antonietta Morrica; Fabrizio Maggi; Maria Linda Vatteroni; Giulia Freer; Claudia Fornai; Francesca Casula; Santino Marchi; P. Ciccorossi; Paolo Rovero; Mauro Bendinelli

TT virus (TTV) infection is extremely widespread in the general population. A sensitive real‐time PCR assay was developed that quantitated accurately the most prevalent TTV genotypes in Italy. When used to test 217 individuals for TTV viraemia, the overall prevalence was 94%. Viraemia levels varied widely amongst individual subjects, with no major differences related to gender or age. The highest TTV titres were in haemophiliacs and in patients with non‐A–E hepatitis, but they did not differ from the group with miscellaneous diseases. HIV‐ and HCV‐infected subjects and patients with primary liver diseases had TTV loads similar to those of healthy individuals. J. Med. Virol. 63:189–195, 2001.


Methods | 2013

Intracellular cytokine detection by fluorescence-activated flow cytometry: Basic principles and recent advances

Giulia Freer; Laura Rindi

Intracellular cytokine staining is a flow cytometric technique consisting of culturing stimulated cytokine-producing cells in the presence of a protein secretion inhibitor, followed by fixation, permeabilization and staining of intracellular cytokines and cell markers (surface or cytoplasmic) with fluorescent antibodies. Up to 18 different colors can be detected by modern flow cytometers, making it the only immunological technique allowing simultaneous determination of antigen-specific T cell function and phenotype. In addition, cell proliferation and viability can be also measured. For this reason, it is probably the most popular method to measure antigenicity during vaccine trials and in the study of infectious diseases, along with ELISPOT. In this review, we will summarize its features, provide the protocol used by most laboratories and review its most recent applications.


PLOS Pathogens | 2009

Influence of Dendritic Cells on Viral Pathogenicity

Giulia Freer; Donatella Matteucci

Although most viral infections cause minor, if any, symptoms, a certain number result in serious illness. Viral disease symptoms result both from direct viral replication within host cells and from indirect immunopathological consequences. Dendritic cells (DCs) are key determinants of viral disease outcome; they activate immune responses during viral infection and direct T cells toward distinct T helper type responses. Certain viruses are able to skew cytokine secretion by DCs inducing and/or downregulating the immune system with the aim of facilitating and prolonging release of progeny. Thus, the interaction of DCs with viruses most often results in the absence of disease or complete recovery when natural functions of DCs prevail, but may lead to chronic illness or death when these functions are outmanoeuvred by viruses in the exploitation of DCs.


Microbiology | 2002

Involvement of the fadD33 gene in the growth of Mycobacterium tuberculosis in the liver of BALB/c mice

Laura Rindi; Lanfranco Fattorini; Daniela Bonanni; Elisabetta Iona; Giulia Freer; Dejiang Tan; Gianni Dehò; Graziella Orefici; Carlo Garzelli

The potential pathogenic role of Mycobacterium tuberculosis H37Rv fadD33, a gene encoding an acyl-CoA synthase that is underexpressed in the attenuated strain H37Ra, was investigated. In a first approach, fadD33 was cloned and expressed in strain H37Ra to restore gene expression and fadD33-complemented bacteria were used to investigate whether fadD33 might confer any growth advantage to M. tuberculosis H37Ra in an infection model of BALB/c mice. No differences were found in the growth rates of M. tuberculosis H37Rv, H37Ra and fadD33-complemented H37Ra in the lungs and spleen. In contrast, in the liver, where the attenuated strain H37Ra showed impaired growth compared to the virulent strain H37Rv, complementation of the attenuated strain H37Ra with fadD33 restored bacterial replication. In a further approach, the fadD33 gene of strain H37Rv was disrupted by allelic exchange mutagenesis and the virulence of the mutant strain was tested by mouse infection. It was found that disruption of fadD33 decreased M. tuberculosis H37Rv growth in the liver, but not in the lungs or spleen, and complementation of the fadD33-disrupted mutant with fadD33 restored bacterial replication in the liver, but did not affect replication in the lungs and spleen. These findings suggest that fadD33 plays a role in M. tuberculosis virulence by supporting bacterial growth in the liver.


Journal of Virology | 2006

AIDS Vaccination Studies with an Ex Vivo Feline Immunodeficiency Virus Model: Analysis of the Accessory ORF-A Protein and DNA as Protective Immunogens

Mauro Pistello; Francesca Bonci; J. Norman Flynn; Paola Mazzetti; Patrizia Isola; Elisa Zabogli; Valentina Camerini; Donatella Matteucci; Giulia Freer; Paolo Pelosi; Mauro Bendinelli

ABSTRACT Determining which antigen must be included in AIDS vaccines to confer maximum protection is of utmost importance. In primate models, vaccines consisting of or including accessory viral proteins have yielded conflicting results. We investigated the protective potential of the accessory protein ORF-A of feline immunodeficiency virus (FIV) in cats. All three immunization strategies used (protein alone in alum adjuvant, DNA alone, or DNA prime-protein boost) clearly generated detectable immune responses. Upon challenge with ex vivo homologous FIV, ORF-A-immunized cats showed distinct enhancement of acute-phase infection relative to mock-immunized animals given alum or empty vector DNA. This effect was tentatively attributed to increased expression of the FIV receptor CD134 that was observed in the immunized cats. However, at subsequent sampling points that were continued for up to 10 months postchallenge, the average plasma viral loads of the ORF-A-immunized animals were slightly but consistently reduced relative to those of the control animals. In addition, CD4+ T lymphocytes in the circulation system declined more slowly in immunized animals than in control animals. These findings support the contention that immunization with lentiviral accessory proteins can improve the hosts ability to control virus replication and slow down disease progression but also draw attention to the fact that even simple immunogens that eventually contribute to protective activity can transiently exacerbate subsequent lentiviral infections.


Journal of Virology | 2012

A Lentiviral Vector-Based, Herpes Simplex Virus 1 (HSV-1) Glycoprotein B Vaccine Affords Cross-Protection against HSV-1 and HSV-2 Genital Infections

Flavia Chiuppesi; Laura Vannucci; Anna De Luca; Michele Lai; Barbara Matteoli; Giulia Freer; Roberto Manservigi; Luca Ceccherini-Nelli; Fabrizio Maggi; Mauro Bendinelli; Mauro Pistello

ABSTRACT Genital herpes is caused by herpes simplex virus 1 (HSV-1) and HSV-2, and its incidence is constantly increasing in the human population. Regardless of the clinical manifestation, HSV-1 and HSV-2 infections are highly transmissible to sexual partners and enhance susceptibility to other sexually transmitted infections. An effective vaccine is not yet available. Here, HSV-1 glycoprotein B (gB1) was delivered by a feline immunodeficiency virus (FIV) vector and tested against HSV-1 and HSV-2 vaginal challenges in C57BL/6 mice. The gB1 vaccine elicited cross-neutralizing antibodies and cell-mediated responses that protected 100 and 75% animals from HSV-1- and HSV-2-associated severe disease, respectively. Two of the eight fully protected vaccinees underwent subclinical HSV-2 infection, as demonstrated by deep immunosuppression and other analyses. Finally, vaccination prevented death in 83% of the animals challenged with a HSV-2 dose that killed 78 and 100% naive and mock-vaccinated controls, respectively. Since this FIV vector can accommodate two or more HSV immunogens, this vaccine has ample potential for improvement and may become a candidate for the development of a truly effective vaccine against genital herpes.


Genetic Vaccines and Therapy | 2007

Streamlined design of a self-inactivating feline immunodeficiency virus vector for transducing ex vivo dendritic cells and T lymphocytes

Mauro Pistello; Laura Vannucci; Alessia Ravani; Francesca Bonci; Flavia Chiuppesi; Barbara Del Santo; Giulia Freer; Mauro Bendinelli

BackgroundSafe and efficient vector systems for delivering antigens or immunomodulatory molecules to dendritic cells (DCs), T lymphocytes or both are considered effective means of eliciting adaptive immune responses and modulating their type, extent, and duration. As a possible tool toward this end, we have developed a self-inactivating vector derived from feline immunodeficiency virus (FIV) showing performance characteristics similar to human immunodeficiency virus-derived vectors but devoid of the safety concerns these vectors have raised.MethodsThe pseudotyped FIV particles were generated with a three-plasmid system consisting of: the packaging construct, providing Gag, Pol and the accessory proteins; the vector(s), basically containing FIV packaging signal (ψ), Rev responsive element, R-U5 region at both ends, and the green fluorescent protein as reporter gene; and the Env plasmid, encoding the G protein of vesicular stomatitis virus (VSV-G) or the chimeric RD114 protein. Both packaging and vector constructs were derived from p34TF10, a replication competent molecular clone of FIV. The pseudotyped particles were produced by transient transfection in the Crandell feline fibroblast kidney (CrFK) or the human epithelial (293T) cell line.ResultsTo broaden its species tropism, the final vector construct was achieved through a series of intermediate constructs bearing a longer ψ, the FIV central polypurin tract sequence (cPPT), or the woodchuck hepatitis post-regulatory element (WPRE). These constructs were compared for efficiency and duration of transduction in CrFK or 293T cells and in the murine fibroblast cell line NIH-3T3. Whereas ψ elongation and cPPT addition did not bring any obvious benefit, insertion of WPRE downstream GFP greatly improved vector performances. To maximize the efficiency of transduction for ex-vivo murine DCs and T-lymphocytes, this construct was tested with VSV-G or RD114 and using different transduction protocols. The results indicated that the FIV construct derived herein stably transduced both cell types, provided that appropriate vector makeup and transduction protocol were used. Further, transduced DCs underwent changes suggestive of an induced maturation.ConclusionIn contrast to previously described FIV vectors that were poorly efficient in delivering genetic material to DCs and T lymphocytes, the vector developed herein has potential for use in experimental immunization strategies.


Clinical and Vaccine Immunology | 2005

Generation of Feline Dendritic Cells Derived from Peripheral Blood Monocytes for In Vivo Use

Giulia Freer; Donatella Matteucci; Paola Mazzetti; Leonia Bozzacco; Mauro Bendinelli

ABSTRACT Dendritic cells (DCs) are professional antigen-presenting cells that can prime T cells and polarize the cellular immune response. Because Th1-type immune responses have been connected to success in combating viral infection, a promising therapeutic application of DCs would be their differentiation in vitro and injection back into the host to boost an immune response in infected animals. This study was aimed both at developing a protocol to cultivate feline DCs in the absence of exogenous proteins for their use in vivo and at investigating what might be the most appropriate stimulus to induce their maturation in vitro and finding correlates of maturation. We generated DCs from peripheral blood monocytes in the presence of feline interleukin-4 and granulocyte-macrophage colony stimulating factor, and after 5 days their maturation was induced with either lipopolysaccharide, human recombinant tumor necrosis factor alpha, poly(I:C), or activated feline platelets. After 48 h, their CD14, CD1a, major histocompatibility complex class II, and B7.1 surface expression was analyzed in parallel with their ability to uptake antigen or prime a mixed leukocyte reaction. The results presented show that feline DCs cultured in autologous plasma differentiate and are able to mature in the presence of stimuli similar to the ones currently used for other species. The present work sets the grounds for future use of DCs obtained by the protocol described for in vivo vaccination and immunotherapy of feline immunodeficiency virus-infected cats.


Genetic Vaccines and Therapy | 2007

Streamlined design of a self-inactivating feline immunodeficiency virus vector for transducing ex vivo

Mauro Pistello; Laura Vannucci; Alessia Ravani; Francesca Bonci; Flavia Chiuppesi; Barbara Del Santo; Giulia Freer; Mauro Bendinelli

BackgroundSafe and efficient vector systems for delivering antigens or immunomodulatory molecules to dendritic cells (DCs), T lymphocytes or both are considered effective means of eliciting adaptive immune responses and modulating their type, extent, and duration. As a possible tool toward this end, we have developed a self-inactivating vector derived from feline immunodeficiency virus (FIV) showing performance characteristics similar to human immunodeficiency virus-derived vectors but devoid of the safety concerns these vectors have raised.MethodsThe pseudotyped FIV particles were generated with a three-plasmid system consisting of: the packaging construct, providing Gag, Pol and the accessory proteins; the vector(s), basically containing FIV packaging signal (ψ), Rev responsive element, R-U5 region at both ends, and the green fluorescent protein as reporter gene; and the Env plasmid, encoding the G protein of vesicular stomatitis virus (VSV-G) or the chimeric RD114 protein. Both packaging and vector constructs were derived from p34TF10, a replication competent molecular clone of FIV. The pseudotyped particles were produced by transient transfection in the Crandell feline fibroblast kidney (CrFK) or the human epithelial (293T) cell line.ResultsTo broaden its species tropism, the final vector construct was achieved through a series of intermediate constructs bearing a longer ψ, the FIV central polypurin tract sequence (cPPT), or the woodchuck hepatitis post-regulatory element (WPRE). These constructs were compared for efficiency and duration of transduction in CrFK or 293T cells and in the murine fibroblast cell line NIH-3T3. Whereas ψ elongation and cPPT addition did not bring any obvious benefit, insertion of WPRE downstream GFP greatly improved vector performances. To maximize the efficiency of transduction for ex-vivo murine DCs and T-lymphocytes, this construct was tested with VSV-G or RD114 and using different transduction protocols. The results indicated that the FIV construct derived herein stably transduced both cell types, provided that appropriate vector makeup and transduction protocol were used. Further, transduced DCs underwent changes suggestive of an induced maturation.ConclusionIn contrast to previously described FIV vectors that were poorly efficient in delivering genetic material to DCs and T lymphocytes, the vector developed herein has potential for use in experimental immunization strategies.

Collaboration


Dive into the Giulia Freer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge