Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giulia Menichetti is active.

Publication


Featured researches published by Giulia Menichetti.


PLOS ONE | 2014

Weighted multiplex networks.

Giulia Menichetti; Daniel Remondini; Pietro Panzarasa; Raul J. Mondragon; Ginestra Bianconi

One of the most important challenges in network science is to quantify the information encoded in complex network structures. Disentangling randomness from organizational principles is even more demanding when networks have a multiplex nature. Multiplex networks are multilayer systems of nodes that can be linked in multiple interacting and co-evolving layers. In these networks, relevant information might not be captured if the single layers were analyzed separately. Here we demonstrate that such partial analysis of layers fails to capture significant correlations between weights and topology of complex multiplex networks. To this end, we study two weighted multiplex co-authorship and citation networks involving the authors included in the American Physical Society. We show that in these networks weights are strongly correlated with multiplex structure, and provide empirical evidence in favor of the advantage of studying weighted measures of multiplex networks, such as multistrength and the inverse multiparticipation ratio. Finally, we introduce a theoretical framework based on the entropy of multiplex ensembles to quantify the information stored in multiplex networks that would remain undetected if the single layers were analyzed in isolation.


Physical Review Letters | 2014

Network controllability is determined by the density of low in-degree and out-degree nodes.

Giulia Menichetti; Luca Dall'Asta; Ginestra Bianconi

The problem of controllability of the dynamical state of a network is central in network theory and has wide applications ranging from network medicine to financial markets. The driver nodes of the network are the nodes that can bring the network to the desired dynamical state if an external signal is applied to them. Using the framework of structural controllability, here, we show that the density of nodes with in degree and out degree equal to one and two determines the number of driver nodes in the network. Moreover, we show that random networks with minimum in degree and out degree greater than two, are always fully controllable by an infinitesimal fraction of driver nodes, regardless of the other properties of the degree distribution. Finally, based on these results, we propose an algorithm to improve the controllability of networks.


Scientific Reports | 2015

Emergent Complex Network Geometry

Zhihao Wu; Giulia Menichetti; Christoph Rahmede; Ginestra Bianconi

Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.


Briefings in Bioinformatics | 2016

Systems medicine of inflammaging

Gastone Castellani; Giulia Menichetti; Paolo Garagnani; Maria Giulia Bacalini; Chiara Pirazzini; Claudio Franceschi; Sebastiano Collino; Claudia Sala; Daniel Remondini; Enrico Giampieri; Ettore Mosca; Matteo Bersanelli; Silvia Vitali; Italo Faria do Valle; Pietro Liò; Luciano Milanesi

Systems Medicine (SM) can be defined as an extension of Systems Biology (SB) to Clinical-Epidemiological disciplines through a shifting paradigm, starting from a cellular, toward a patient centered framework. According to this vision, the three pillars of SM are Biomedical hypotheses, experimental data, mainly achieved by Omics technologies and tailored computational, statistical and modeling tools. The three SM pillars are highly interconnected, and their balancing is crucial. Despite the great technological progresses producing huge amount of data (Big Data) and impressive computational facilities, the Bio-Medical hypotheses are still of primary importance. A paradigmatic example of unifying Bio-Medical theory is the concept of Inflammaging. This complex phenotype is involved in a large number of pathologies and patho-physiological processes such as aging, age-related diseases and cancer, all sharing a common inflammatory pathogenesis. This Biomedical hypothesis can be mapped into an ecological perspective capable to describe by quantitative and predictive models some experimentally observed features, such as microenvironment, niche partitioning and phenotype propagation. In this article we show how this idea can be supported by computational methods useful to successfully integrate, analyze and model large data sets, combining cross-sectional and longitudinal information on clinical, environmental and omics data of healthy subjects and patients to provide new multidimensional biomarkers capable of distinguishing between different pathological conditions, e.g. healthy versus unhealthy state, physiological versus pathological aging.


Physical Review E | 2014

Correlations between weights and overlap in ensembles of weighted multiplex networks.

Giulia Menichetti; Daniel Remondini; Ginestra Bianconi

Multiplex networks describe a large number of systems ranging from social networks to the brain. These multilayer structure encode information in their structure. This information can be extracted by measuring the correlations present in the multiplex networks structure, such as the overlap of the links in different layers. Many multiplex networks are also weighted, and the weights of the links can be strongly correlated with the structural properties of the multiplex network. For example, in multiplex network formed by the citation and collaboration networks between PRE scientists it was found that the statistical properties of citations to coauthors differ from the one of citations to noncoauthors, i.e., the weights depend on the overlap of the links. Here we present a theoretical framework for modeling multiplex weighted networks with different types of correlations between weights and overlap. To this end, we use the framework of canonical network ensembles, and the recently introduced concept of multilinks, showing that null models of a large variety of network structures can be constructed in this way. In order to provide a concrete example of how this framework apply to real data we consider a multiplex constructed from gene expression data of healthy and cancer tissues.


Scientific Reports | 2016

Control of Multilayer Networks

Giulia Menichetti; Luca Dall'Asta; Ginestra Bianconi

The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable.


Journal of Proteome Research | 2016

Entropy-Based Network Representation of the Individual Metabolic Phenotype

Edoardo Saccenti; Giulia Menichetti; Veronica Ghini; Daniel Remondini; Leonardo Tenori; Claudio Luchinat

We approach here the problem of defining and estimating the nature of the metabolite-metabolite association network underlying the human individual metabolic phenotype in healthy subjects. We retrieved significant associations using an entropy-based approach and a multiplex network formalism. We defined a significantly over-represented network formed by biologically interpretable metabolite modules. The entropy of the individual metabolic phenotype is also introduced and discussed.


Mechanisms of Ageing and Development | 2015

Statistical strategies and stochastic predictive models for the MARK-AGE data

Enrico Giampieri; Daniel Remondini; Maria Giulia Bacalini; Paolo Garagnani; Chiara Pirazzini; Stella Lukas Yani; Cristina Giuliani; Giulia Menichetti; Isabella Zironi; Claudia Sala; Miriam Capri; Claudio Franceschi; Alexander Bürkle; Gastone Castellani

MARK-AGE aims at the identification of biomarkers of human aging capable of discriminating between the chronological age and the effective functional status of the organism. To achieve this, given the structure of the collected data, a proper statistical analysis has to be performed, as the structure of the data are non trivial and the number of features under study is near to the number of subjects used, requiring special care to avoid overfitting. Here we described some of the possible strategies suitable for this analysis. We also include a description of the main techniques used, to explain and justify the selected strategies. Among other possibilities, we suggest to model and analyze the data with a three step strategy.


Rivista Di Biologia-biology Forum | 2014

Entropy of a Network Ensemble : Definitions and Applications to Genomic Data

Giulia Menichetti; Daniel Remondini

In this paper we introduce the framework for the application of statistical mechanics to network theory, with a particular emphasis to the concept of entropy of network ensembles. This formalism provides novel observables and insights for the analysis of high-throughput transcriptomics data, integrated with apriori biological knowledge, embedded in-to available public databases of protein-protein interaction and cell signaling.


Scientific Reports | 2016

Network measures for protein folding state discrimination.

Giulia Menichetti; Piero Fariselli; Daniel Remondini

Proteins fold using a two-state or multi-state kinetic mechanisms, but up to now there is not a first-principle model to explain this different behavior. We exploit the network properties of protein structures by introducing novel observables to address the problem of classifying the different types of folding kinetics. These observables display a plain physical meaning, in terms of vibrational modes, possible configurations compatible with the native protein structure, and folding cooperativity. The relevance of these observables is supported by a classification performance up to 90%, even with simple classifiers such as discriminant analysis.

Collaboration


Dive into the Giulia Menichetti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ginestra Bianconi

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge