Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giulia Perrone is active.

Publication


Featured researches published by Giulia Perrone.


Blood | 2011

Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation

Elena Zamagni; Francesca Patriarca; Cristina Nanni; Beatrice Anna Zannetti; Emanuela Englaro; Annalisa Pezzi; Paola Tacchetti; Silvia Buttignol; Giulia Perrone; Annamaria Brioli; Lucia Pantani; Carolina Terragna; Francesca Carobolante; Michele Baccarani; Renato Fanin; Stefano Fanti; Michele Cavo

We prospectively analyzed the prognostic relevance of positron emission tomography-computed tomography (PET/CT) at diagnosis, after thalidomide-dexamethasone (TD) induction therapy and double autotransplantation (ASCT) in 192 newly diagnosed multiple myeloma (MM) patients. Presence at baseline of at least 3 focal lesions (FLs; 44% of cases), a standardized uptake value (SUV) > 4.2 (46%), and extramedullary disease (EMD; 6%) adversely affected 4-year estimates of progression-free survival (PFS; ≥ 3 FLs: 50%; SUV > 4.2: 43%; presence of EMD: 28%). SUV > 4.2 and EMD were also correlated with shorter overall survival (OS; 4-year rates: 77% and 66%, respectively). Persistence of SUV > 4.2 after TD induction was an early predictor for shorter PFS. Three months after ASCT, PET/CT was negative in 65% of patients whose 4-year rates of PFS and OS were superior to those of PET-positive patients (PFS: 66% and OS: 89%). In a multivariate analysis, both EMD and SUV > 4.2 at baseline and persistence of fluorodeoxyglucose (FDG) uptake after ASCT were independent variables adversely affecting PFS. PET/CT involvement at diagnosis, after novel agent-based induction and subsequent ASCT is a reliable predictor of prognosis in MM patients. This study is registered at www.clinicaltrials.gov as NTC01341262.


Blood | 2012

Bortezomib-thalidomide-dexamethasone is superior to thalidomide-dexamethasone as consolidation therapy after autologous hematopoietic stem cell transplantation in patients with newly diagnosed multiple myeloma

Michele Cavo; Lucia Pantani; Maria Teresa Petrucci; Francesca Patriarca; Elena Zamagni; Daniela Donnarumma; Claudia Crippa; Mario Boccadoro; Giulia Perrone; Antonietta Falcone; Chiara Nozzoli; Renato Zambello; Luciano Masini; Anna Furlan; Annamaria Brioli; Daniele Derudas; Stelvio Ballanti; Maria Laura Dessanti; Valerio De Stefano; Angelo Michele Carella; Magda Marcatti; Andrea Nozza; Felicetto Ferrara; Vincenzo Callea; Catello Califano; Annalisa Pezzi; Anna Baraldi; Mariella Grasso; Pellegrino Musto; Antonio Palumbo

In a randomized, phase 3 study, superior complete/near-complete response (CR/nCR) rates and extended progression-free survival were demonstrated with bortezomib-thalidomide-dexamethasone (VTD) versus thalidomide-dexamethasone (TD) as induction therapy before, and consolidation after, double autologous stem cell transplantation for newly diagnosed myeloma patients (intention-to-treat analysis; VTD, n = 236; TD, n = 238). This per-protocol analysis (VTD, n = 160; TD, n = 161) specifically assessed the efficacy and safety of consolidation with VTD or TD. Before starting consolidation, CR/nCR rates were not significantly different in the VTD (63.1%) and TD arms (54.7%). After consolidation, CR (60.6% vs 46.6%) and CR/nCR (73.1% vs 60.9%) rates were significantly higher for VTD-treated versus TD-treated patients. VTD consolidation significantly increased CR and CR/nCR rates, but TD did not (McNemar test). With a median follow-up of 30.4 months from start of consolidation, 3-year progression-free survival was significantly longer for the VTD group (60% vs 48% for TD). Grade 2 or 3 peripheral neuropathy (8.1% vs 2.4%) was more frequent with VTD (grade 3, 0.6%) versus TD consolidation. The superior efficacy of VTD versus TD as induction was retained despite readministration as consolidation therapy after double autologous transplantation. VTD consolidation therapy significantly contributed to improved clinical outcomes observed for patients randomly assigned to the VTD arm of the study. The study is registered at www.clinicaltrials.gov as #NCT01134484.


Blood | 2010

A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma

Gullu Gorgun; Elisabetta Calabrese; Teru Hideshima; Jeffrey Ecsedy; Giulia Perrone; Mala Mani; Hiroshi Ikeda; Giada Bianchi; Yiguo Hu; Diana Cirstea; Loredana Santo; Yu-Tzu Tai; Sabikun Nahar; Mei Zheng; Madhavi Bandi; Ruben D. Carrasco; Noopur Raje; Nikhil C. Munshi; Paul G. Richardson; Kenneth C. Anderson

Aurora-A is a mitotic kinase that regulates mitotic spindle formation and segregation. In multiple myeloma (MM), high Aurora-A gene expression has been correlated with centrosome amplification and proliferation; thus, inhibition of Aurora-A in MM may prove to be therapeutically beneficial. Here we assess the in vitro and in vivo anti-MM activity of MLN8237, a small-molecule Aurora-A kinase inhibitor. Treatment of cultured MM cells with MLN8237 results in mitotic spindle abnormalities, mitotic accumulation, as well as inhibition of cell proliferation through apoptosis and senescence. In addition, MLN8237 up-regulates p53 and tumor suppressor genes p21 and p27. Combining MLN8237 with dexamethasone, doxorubicin, or bortezomib induces synergistic/additive anti-MM activity in vitro. In vivo anti-MM activity of MLN8237 was confirmed using a xenograft-murine model of human-MM. Tumor burden was significantly reduced (P = .007) and overall survival was significantly increased (P < .005) in animals treated with 30 mg/kg MLN8237 for 21 days. Induction of apoptosis and cell death by MLN8237 were confirmed in tumor cells excised from treated animals by TdT-mediated dUTP nick end labeling assay. MLN8237 is currently in phase 1 and phase 2 clinical trials in patients with advanced malignancies, and our preclinical results suggest that MLN8237 may be a promising novel targeted therapy in MM.


Clinical Cancer Research | 2009

The Monoclonal Antibody nBT062 Conjugated to Cytotoxic Maytansinoids Has Selective Cytotoxicity Against CD138-Positive Multiple Myeloma Cells In vitro and In vivo

Hiroshi Ikeda; Teru Hideshima; Mariateresa Fulciniti; Robert J. Lutz; Hiroshi Yasui; Yutaka Okawa; Tanyel Kiziltepe; Sonia Vallet; Samantha Pozzi; Loredana Santo; Giulia Perrone; Yu-Tzu Tai; Diana Cirstea; Noopur Raje; Christoph Uherek; Benjamin Dälken; Silke Aigner; Frank Osterroth; Nikhil C. Munshi; Paul G. Richardson; Kenneth C. Anderson

Purpose: We investigated the antitumor effect of murine/human chimeric CD138-specific monoclonal antibody nBT062 conjugated with highly cytotoxic maytansinoid derivatives against multiple myeloma (MM) cells in vitro and in vivo. Experimental Design: We examined the growth inhibitory effect of BT062-SPDB-DM4, BT062-SMCC-DM1, and BT062-SPP-DM1 against MM cell lines and primary tumor cells from MM patients. We also examined in vivo activity of these agents in murine MM cell xenograft model of human and severe combined immunodeficient (SCID) mice bearing implant bone chips injected with human MM cells (SCID-hu model). Results: Anti-CD138 immunoconjugates significantly inhibited growth of MM cell lines and primary tumor cells from MM patients without cytotoxicity against peripheral blood mononuclear cells from healthy volunteers. In MM cells, they induced G2-M cell cycle arrest, followed by apoptosis associated with cleavage of caspase-3, caspase-8, caspase-9, and poly(ADP-ribose) polymerase. Nonconjugated nBT062 completely blocked cytotoxicity induced by nBT062-maytansinoid conjugate, confirming that specific binding is required for inducing cytotoxicity. Moreover, nBT062-maytansinoid conjugates blocked adhesion of MM cells to bone marrow stromal cells. The coculture of MM cells with bone marrow stromal cells protects against dexamethasone-induced death but had no effect on the cytotoxicity of immunoconjugates. Importantly, nBT062-SPDB-DM4 and nBT062-SPP-DM1 significantly inhibited MM tumor growth in vivo and prolonged host survival in both the xenograft mouse models of human MM and SCID-hu mouse model. Conclusion: These results provide the preclinical framework supporting evaluation of nBT062-maytansinoid derivatives in clinical trials to improve patient outcome in MM.


Blood | 2010

Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma

Gullu Gorgun; Elisabetta Calabrese; Ender Soydan; Teru Hideshima; Giulia Perrone; Madhavi Bandi; Diana Cirstea; Loredana Santo; Yiguo Hu; Yu-Tzu Tai; Sabikun Nahar; Naoya Mimura; Claire Fabre; Noopur Raje; Nikhil C. Munshi; Paul G. Richardson; Kenneth C. Anderson

The bone marrow (BM) microenvironment consists of extracellular-matrix and the cellular compartment including immune cells. Multiple myeloma (MM) cell and BM accessory cell interaction promotes MM survival via both cell-cell contact and cytokines. Immunomodulatory agents (IMiDs) target not only MM cells, but also MM cell-immune cell interactions and cytokine signaling. Here we examined the in vitro effects of IMiDs on cytokine signaling triggered by interaction of effector cells with MM cells and BM stroma cells. IMiDs diminished interleukin-2, interferonγ, and IL-6 regulator suppressor of cytokine signaling (SOCS)1 expression in immune (CD4T, CD8T, natural-killer T, natural-killer) cells from both BM and PB of MM patients. In addition, coculture of MM cells with healthy PBMCs induced SOCS1 expression in effector cells; conversely, treatment with IMiDs down-regulated the SOCS1 expression. SOCS1 negatively regulates IL-6 signaling and is silenced by hypermethylation in MM cells. To define the mechanism of inhibitory-cytokine signaling in effector cells and MM cells, we next analyzed the interaction of immune cells with MM cells that were epigenetically modified to re-express SOCS1; IMiDs induced more potent CTL responses against SOCS1 re-expressing-MM cells than unmodified MM cells. These data therefore demonstrate that modulation of SOCS1 may enhance immune response and efficacy of IMiDs in MM.


Molecular Cancer Therapeutics | 2010

Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma.

Diana Cirstea; Teru Hideshima; Scott J. Rodig; Loredana Santo; Samantha Pozzi; Sonia Vallet; Hiroshi Ikeda; Giulia Perrone; Gullu Gorgun; Kishan Patel; Neil Desai; Peter Sportelli; Shweta Kapoor; Shireen Vali; Siddhartha Mukherjee; Nikhil C. Munshi; Kenneth C. Anderson; Noopur Raje

The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway mediates multiple myeloma (MM) cell proliferation, survival, and development of drug resistance, underscoring the role of mTOR inhibitors, such as rapamycin, with potential anti-MM activity. However, recent data show a positive feedback loop from mTOR/S6K1 to Akt, whereby Akt activation confers resistance to mTOR inhibitors. We confirmed that suppression of mTOR signaling in MM cells by rapamycin was associated with upregulation of Akt phosphorylation. We hypothesized that inhibiting this positive feedback by a potent Akt inhibitor perifosine would augment rapamycin-induced cytotoxicity in MM cells. Perifosine inhibited rapamycin-induced phosphorylated Akt, resulting in enhanced cytotoxicity in MM.1S cells even in the presence of interleukin-6, insulin-like growth factor-I, or bone marrow stromal cells. Moreover, rapamycin-induced autophagy in MM.1S MM cells, as evidenced by electron microscopy and immunocytochemistry, was augmented by perifosine. Combination therapy increased apoptosis detected by Annexin V/propidium iodide analysis and caspase/poly(ADP-ribose) polymerase cleavage. Importantly, in vivo antitumor activity and prolongation of survival in a MM mouse xenograft model after treatment was enhanced with combination of nanoparticle albumin-bound–rapamycin and perifosine. Utilizing the in silico predictive analysis, we confirmed our experimental findings of this drug combination on PI3K, Akt, mTOR kinases, and the caspases. Our data suggest that mutual suppression of the PI3K/Akt/mTOR pathway by rapamycin and perifosine combination induces synergistic MM cell cytotoxicity, providing the rationale for clinical trials in patients with relapsed/refractory MM. Mol Cancer Ther; 9(4); 963–75. ©2010 AACR.


Blood | 2010

PI3K/p110{delta} is a novel therapeutic target in multiple myeloma.

Hiroshi Ikeda; Teru Hideshima; Mariateresa Fulciniti; Giulia Perrone; Naoya Miura; Hiroshi Yasui; Yutaka Okawa; Tanyel Kiziltepe; Loredana Santo; Sonia Vallet; Diana Cristea; Elisabetta Calabrese; Gullu Gorgun; Noopur Raje; Paul G. Richardson; Nikhil C. Munshi; Brian Lannutti; Kamal D. Puri; Neill A. Giese; Kenneth C. Anderson

In this study, we demonstrate expression and examined the biologic sequelae of PI3K/p110delta signaling in multiple myeloma (MM). Knockdown of p110delta by small interfering RNA caused significant inhibition of MM cell growth. Similarly, p110delta specific small molecule inhibitor CAL-101 triggered cytotoxicity against LB and INA-6 MM cell lines and patient MM cells, associated with inhibition of Akt phosphorylation. In contrast, CAL-101 did not inhibit survival of normal peripheral blood mononuclear cells. CAL-101 overcame MM cell growth conferred by interleukin-6, insulin-like growth factor-1, and bone marrow stromal cell coculture. Interestingly, inhibition of p110delta potently induced autophagy. The in vivo inhibition of p110delta with IC488743 was evaluated in 2 murine xenograft models of human MM: SCID mice bearing human MM cells subcutaneously and the SCID-hu model, in which human MM cells are injected within a human bone chip implanted subcutaneously in SCID mice. IC488743 significantly inhibited tumor growth and prolonged host survival in both models. Finally, combined CAL-101 with bortezomib induced synergistic cytotoxicity against MM cells. Our studies therefore show that PI3K/p110delta is a novel therapeutic target in MM and provide the basis for clinical evaluation of CAL-101 to improve patient outcome in MM.


European Journal of Haematology | 2005

Neurological toxicity of long-term (>1 yr) thalidomide therapy in patients with multiple myeloma.

Patrizia Tosi; Elena Zamagni; Claudia Cellini; R. Plasmati; Delia Cangini; Paola Tacchetti; Giulia Perrone; F. Pastorelli; Sante Tura; Michele Baccarani; Michele Cavo

Objective: Thalidomide is remarkably active in advanced relapsed and refractory multiple myeloma (MM), so that its use has been recently proposed either in newly diagnosed patients or as maintenance treatment after conventional or high‐dose therapy. This latter therapeutic approach has risen the concern of side‐effects of long‐term therapy with this drug. Methods: We analysed long‐term toxicity of 40 patients (27 M, 13 F, median age = 61.5 yr) who received salvage therapy with thalidomide ± dexamethasone for longer than 12 months (median 15, range 12–44) at our centre. All the patients had achieved at least a stable disease upon treatment with thalidomide alone (200–400 mg/d, n = 20) or thalidomide (200 mg/d) and dexamethasone (40 mg/d for 4 d every 4 wk) (n = 20). Results and conclusions: Neurotoxicity was the most troublesome and frequent toxic effect that was observed after long‐term treatment, the incidence averaging 75%. Among these 30 patients symptoms included paraesthesias, tremor and dizziness. Neurotoxicity was grade 1 in six patients (15%); grade 2 in 13 patients (32.5%), thus determining thalidomide dose reduction to 100 mg/d; and grade 3 in 11 patients (27.5%) who had subsequently to interrupt therapy despite their response. Electromyographic study, performed in patients with grade ≥2 neurotoxicity, revealed a symmetrical, mainly sensory peripheral neuropathy, with minor motor involvement. The severity of neurotoxicity was not related to cumulative or daily thalidomide dose, but only to the duration of the disease prior to thalidomide treatment, although no patients presented neurological symptoms at study entry. These results suggest that long‐term thalidomide therapy in MM may be hampered by the remarkable neurotoxicity of the drug, and that a neurological evaluation should be mandatory prior to thalidomide treatment, in order to identify patients at risk of developing a peripheral neuropathy.


Blood | 2010

PI3K/p110δ is a novel therapeutic target in multiple myeloma

Hiroshi Ikeda; Teru Hideshima; Mariateresa Fulciniti; Giulia Perrone; Naoya Miura; Hiroshi Yasui; Yutaka Okawa; Tanyel Kiziltepe; Loredana Santo; Sonia Vallet; Diana Cristea; Elisabetta Calabrese; Gullu Gorgun; Noopur Raje; Paul G. Richardson; Nikhil C. Munshi; Brian Lannutti; Kamal D. Puri; Neill A. Giese; Kenneth C. Anderson

In this study, we demonstrate expression and examined the biologic sequelae of PI3K/p110delta signaling in multiple myeloma (MM). Knockdown of p110delta by small interfering RNA caused significant inhibition of MM cell growth. Similarly, p110delta specific small molecule inhibitor CAL-101 triggered cytotoxicity against LB and INA-6 MM cell lines and patient MM cells, associated with inhibition of Akt phosphorylation. In contrast, CAL-101 did not inhibit survival of normal peripheral blood mononuclear cells. CAL-101 overcame MM cell growth conferred by interleukin-6, insulin-like growth factor-1, and bone marrow stromal cell coculture. Interestingly, inhibition of p110delta potently induced autophagy. The in vivo inhibition of p110delta with IC488743 was evaluated in 2 murine xenograft models of human MM: SCID mice bearing human MM cells subcutaneously and the SCID-hu model, in which human MM cells are injected within a human bone chip implanted subcutaneously in SCID mice. IC488743 significantly inhibited tumor growth and prolonged host survival in both models. Finally, combined CAL-101 with bortezomib induced synergistic cytotoxicity against MM cells. Our studies therefore show that PI3K/p110delta is a novel therapeutic target in MM and provide the basis for clinical evaluation of CAL-101 to improve patient outcome in MM.


Transplant Immunology | 2003

Role of plasmacytoid dendritic cells in immunity and tolerance after allogeneic hematopoietic stem cell transplantation

Mario Arpinati; Gabriella Chirumbolo; Benedetta Urbini; Giulia Perrone; Damiano Rondelli; Claudio Anasetti

Dendritic cells (DC) may play an important role in the pathogenesis of alloimmune reactions, such as graft-vs.-host disease after allogeneic hematopoietic stem cell transplantation (HSCT). In humans, two types of DC-myeloid DC (mDC) and plasmacytoid DC (pDC) have been characterized and have distinct origins and functions. The data obtained from studies in vitro suggest that pDC are involved in the regulation of immunity, including the induction and maintenance of tolerance, as well as in the defence against viruses. The authors will review all the evidence currently available from reports exploring the role of pDC in clinical allogeneic HSCT.

Collaboration


Dive into the Giulia Perrone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge