Giulia Piaggio
Leipzig University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giulia Piaggio.
Nature Cell Biology | 2002
Gabriella D'Orazi; Barbara Cecchinelli; Tiziana Bruno; Isabella Manni; Yuichiro Higashimoto; Shin'ichi Saito; Monica Gostissa; Sabrina Coen; Alessandra Marchetti; Giannino Del Sal; Giulia Piaggio; Maurizio Fanciulli; Ettore Appella; Silvia Soddu
Phosphorylation of p53 at Ser 46 was shown to regulate p53 apoptotic activity. Here we demonstrate that homeodomain-interacting protein kinase-2 (HIPK2), a member of a novel family of nuclear serine/threonine kinases, binds to and activates p53 by directly phosphorylating it at Ser 46. HIPK2 localizes with p53 and PML-3 into the nuclear bodies and is activated after irradiation with ultraviolet. Antisense inhibition of HIPK2 expression reduces the ultraviolet-induced apoptosis. Furthermore, HIPK2 and p53 cooperate in the activation of p53-dependent transcription and apoptotic pathways. These data define a new functional interaction between p53 and HIPK2 that results in the targeted subcellular localization of p53 and initiation of apoptosis.
Molecular and Cellular Biology | 2000
Silvia Misiti; Simona Nanni; Giulia Fontemaggi; Yu-Sheng Cong; Jianping Wen; Hal Hirte; Giulia Piaggio; Ada Sacchi; Alfredo Pontecorvi; Silvia Bacchetti; Antonella Farsetti
ABSTRACT In mammals, molecular mechanisms and factors involved in the tight regulation of telomerase expression and activity are still largely undefined. In this study, we provide evidence for a role of estrogens and their receptors in the transcriptional regulation of hTERT, the catalytic subunit of human telomerase and, consequently, in the activation of the enzyme. Through a computer analysis of the hTERT 5′-flanking sequences, we identified a putative estrogen response element (ERE) which was capable of binding in vitro human estrogen receptor α (ERα). In vivo DNA footprinting revealed specific modifications of the ERE region in ERα-positive but not ERα-negative cells upon treatment with 17β-estradiol (E2), indicative of estrogen-dependent chromatin remodelling. In the presence of E2, transient expression of ERα but not ERβ remarkably increased hTERT promoter activity, and mutation of the ERE significantly reduced this effect. No telomerase activity was detected in human ovary epithelial cells grown in the absence of E2, but the addition of the hormone induced the enzyme within 3 h of treatment. The expression of hTERT mRNA and protein was induced in parallel with enzymatic activity. This prompt estrogen modulation of telomerase activity substantiates estrogen-dependent transcriptional regulation of the hTERT gene. The identification of hTERT as a target of estrogens represents a novel finding which advances the understanding of telomerase regulation in hormone-dependent cells and has implications for a potential role of hormones in their senescence and malignant conversion.
Molecular and Cellular Biology | 2005
Carol Imbriano; Aymone Gurtner; Silvia Di Agostino; Valentina Basile; Monica Gostissa; Matthias Dobbelstein; Giannino Del Sal; Giulia Piaggio; Roberto Mantovani
ABSTRACT In response to DNA damage, p53 activates G1/S blocking and apoptotic genes through sequence-specific binding. p53 also represses genes with no target site, such as those for Cdc2 and cyclin B, key regulators of the G2/M transition. Like most G2/M promoters, they rely on multiple CCAAT boxes activated by NF-Y, whose binding to DNA is temporally regulated during the cell cycle. NF-Y associates with p53 in vitro and in vivo through the αC helix of NF-YC (a subunit of NF-Y) and a region close to the tetramerization domain of p53. Chromatin immunoprecipitation experiments indicated that p53 is associated with cyclin B2, CDC25C, and Cdc2 promoters in vivo before and after DNA damage, requiring DNA-bound NF-Y. Following DNA damage, p53 is rapidly acetylated at K320 and K373 to K382, histones are deacetylated, and the release of PCAF and p300 correlates with the recruitment of histone deacetylases (HDACs)—HDAC1 before HDAC4 and HDAC5—and promoter repression. HDAC recruitment requires intact NF-Y binding sites. In transfection assays, PCAF represses cyclin B2, and a nonacetylated p53 mutant shows a complete loss of repression potential, despite its abilities to bind NF-Y and to be recruited on G2/M promoters. These data (i) detail a strategy of direct p53 repression through associations with multiple NF-Y trimers that is independent of sequence-specific binding of p53 and that requires C-terminal acetylation, (ii) suggest that p53 is a DNA damage sentinel of the G2/M transition, and (iii) delineate a new role for PCAF in cell cycle control.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Claudia Colussi; Chiara Mozzetta; Aymone Gurtner; Barbara Illi; Jessica Rosati; Stefania Straino; Gianluca Ragone; Mario Pescatori; Germana Zaccagnini; Annalisa Antonini; Giulia Minetti; Fabio Martelli; Giulia Piaggio; Paola Gallinari; Christian Steinkulher; Emilio Clementi; Carmela Dell'Aversana; Lucia Altucci; Antonello Mai; Maurizio C. Capogrossi; Pier Lorenzo Puri; Carlo Gaetano
The overlapping histological and biochemical features underlying the beneficial effect of deacetylase inhibitors and NO donors in dystrophic muscles suggest an unanticipated molecular link among dystrophin, NO signaling, and the histone deacetylases (HDACs). Higher global deacetylase activity and selective increased expression of the class I histone deacetylase HDAC2 were detected in muscles of dystrophin-deficient MDX mice. In vitro and in vivo siRNA-mediated down-regulation of HDAC2 in dystrophic muscles was sufficient to replicate the morphological and functional benefits observed with deacetylase inhibitors and NO donors. We found that restoration of NO signaling in vivo, by adenoviral-mediated expression of a constitutively active endothelial NOS mutant in MDX muscles, and in vitro, by exposing MDX-derived satellite cells to NO donors, resulted in HDAC2 blockade by cysteine S-nitrosylation. These data reveal a special contribution of HDAC2 in the pathogenesis of Duchenne muscular dystrophy and indicate that HDAC2 inhibition by NO-dependent S-nitrosylation is important for the therapeutic response to NO donors in MDX mice. They also define a common target for independent pharmacological interventions in the treatment of Duchenne muscular dystrophy.
Oncogene | 1999
Fabrizio Bolognese; Mark Wasner; Christine Lange-zu Dohna; Aymone Gurtner; Antonella Ronchi; Heiko Müller; Isabella Manni; Joachim Mössner; Giulia Piaggio; Roberto Mantovani; Kurt Engeland
Cyclin B2 is a regulator of p34cdc2 kinase, involved in G2/M progression of the cell cycle, whose gene is strictly regulated at the transcriptional level in cycling cells. The mouse promoter was cloned and three conserved CCAAT boxes were found. In this study, we analysed the mechanisms leading to activation of the cyclin B2 CCAAT boxes: a combination of (i) genomic footprinting, (ii) transfections with single, double and triple mutants, (iii) EMSAs with nuclear extracts, antibodies and NF-Y recombinant proteins and (iv) transfections with an NF-YA dominant negative mutant established the positive role of the three CCAAT sequences and proved that NF-Y plays a crucial role in their activation. NF-Y, an ubiquitous trimer containing histone fold subunits, activates several other promoters regulated during the cell cycle. To analyse the levels of NF-Y subunits in the different phases of the cycle, we separated MEL cells by elutriation, obtaining fractions >80% pure. The mRNA and protein levels of the histone-fold containing NF-YB and NF-YC were invariant, whereas the NF-YA protein, but not its mRNA, was maximal in mid-S and decreased in G2/M. EMSA confirmed that the CCAAT-binding activity followed the amount of NF-YA, indicating that this subunit is limiting within the NF-Y complex, and suggesting that post-transcriptional mechanisms regulate NF-YA levels. Our results support a model whereby fine tuning of this activator is important for phase-specific transcription of CCAAT-containing promoters.
Molecular and Cellular Biology | 2001
Giulia Fontemaggi; Aymone Gurtner; Sabrina Strano; Yujiro Higashi; Ada Sacchi; Giulia Piaggio; Giovanni Blandino
ABSTRACT The newly discovered p73 gene encodes a nuclear protein that has high homology with p53. Furthermore, ectopic expression of p73 in p53+/+ and p53−/− cancer cells recapitulates some of the biological activities of p53 such as growth arrest, apoptosis, and differentiation. p73−/−-deficient mice exhibit severe defects in proper development of the central nervous system and pheromone sensory pathway. They also suffer from inflammation and infections. Here we studied the transcriptional regulation of p73 at the crossroad between proliferation and differentiation. p73 mRNA is undetectable in proliferating C2C12 cells and is expressed at very low levels in undifferentiated P19 and HL60 cells. Conversely, it is upregulated during muscle and neuronal differentiation as well as in response to tetradecanoyl phorbol acetate-induced monocytic differentiation of HL60 cells. We identified a 1-kb regulatory fragment located within the first intron of p73, which is positioned immediately upstream to the ATG codon of the second exon. This fragment exerts silencer activity on p73 as well as on heterologous promoters. The p73 intronic fragment contains six consensus binding sites for transcriptional repressor ZEB, which binds these sites in vitro and in vivo. Ectopic expression of dominant-negative ZEB (ZEB-DB) restores p73 expression in proliferating C2C12 and P19 cells. Thus, transcriptional repression of p73 expression by ZEB binding may contribute to the modulation of p73 expression during differentiation.
Oncogene | 1999
Farina A; Isabella Manni; G Fontemaggi; M Tiainen; C Cenciarelli; M Bellorini; Roberto Mantovani; Ada Sacchi; Giulia Piaggio
The observation that cyclin B1 protein and mRNAs are down-regulated in terminally differentiated (TD) C2C12 cells, suggested us to investigate the transcriptional regulation of the cyclin B1 gene in these cells. Transfections of cyclin B1 promoter constructs indicate that two CCAAT boxes support cyclin B1 promoter activity in proliferating cells. EMSAs demonstrate that both CCAAT boxes are recognized by the trimeric NF-Y complex in proliferating but not in TD cells. Transfecting a dominant-negative mutant of NF-YA we provide evidence that NF-Y is required for maximal promoter activity. Addition of recombinant NF-YA to TD C2C12 nuclear extracts restores binding activity in vitro, thus indicating that the loss of NF-YA in TD cells is responsible for the lack of the NF-Y binding to the CCAAT boxes. Consistent with this, we found that the NF-YA protein is absent in TD C2C12 cells. In conclusion, our data demonstrate that NF-Y is required for cyclin B1 promoter activity. We also demonstrate that cyclin B1 expression is regulated at the transcriptional level in TD C2C12 cells and that the switch-off of cyclin B1 promoter activity in differentiated cells depends upon the loss of a functional NF-Y complex. In particular the loss of NF-YA protein is most likely responsible for its inactivation.
Chemical Reviews | 2010
Alberto Signore; Stephen J. Mather; Giulia Piaggio; G. Malviya; Rudi Dierckx
Nuclear Medicine Unit, II Faculty of Medicine and Surgery, “Sapienza” University of Rome, Rome, Italy, Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands, Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine, John Vane Science Centre, London, UK, and Dipartimento di Oncologia Sperimentale, Istituto Nazionale Tumori Regina Elena IRCCS IFO, Rome, Italy
Molecular and Cellular Biology | 2006
Barbara Cecchinelli; Luca Lavra; Cinzia Rinaldo; Stefano Iacovelli; Aymone Gurtner; Alessandra Gasbarri; Alessandra Ulivieri; Fabrizio Del Prete; Maria Trovato; Giulia Piaggio; Armando Bartolazzi; Silvia Soddu; Salvatore Sciacchitano
ABSTRACT Galectin 3 (Gal-3), a member of the β-galactoside binding lectin family, exhibits antiapoptotic functions, and its aberrant expression is involved in various aspects of tumor progression. Here we show that p53-induced apoptosis is associated with transcriptional repression of Gal-3. Previously, it has been reported that phosphorylation of p53 at Ser46 is important for transcription of proapoptotic genes and induction of apoptosis and that homeodomain-interacting protein kinase 2 (HIPK2) is specifically involved in these functions. We show that HIPK2 cooperates with p53 in Gal-3 repression and that this cooperation requires HIPK2 kinase activity. Gene-specific RNA interference demonstrates that HIPK2 is essential for repression of Gal-3 upon induction of p53-dependent apoptosis. Furthermore, expression of a nonrepressible Gal-3 prevents HIPK2- and p53-induced apoptosis. These results reveal a new apoptotic pathway induced by HIPK2-activated p53 and requiring repression of the antiapoptotic factor Gal-3.
Gene | 1997
Marianna Bellorini; Khalid Zemzoumi; Andrea Farina; Jens Berthelsen; Giulia Piaggio; Roberto Mantovani
The CCAAT box is an important element in eukaryotic promoters and NF-Y (CBF) is a conserved heterotrimeric protein binding to it. Two subunits, NF-YB and NF-YC, contain a histone-like motif. We cloned the complete cDNA coding for the human NF-YC gene. The ORF codes for a 335 aa protein that shows virtual identity to the rat sequence, confirming the stunning invariance of NF-Y genes across species. We expressed and purified the yeast homology domain of NF-YC in bacteria and performed EMSA together with the corresponding conserved domains of NF-YA and NF-YB, obtaining a CCAAT-binding mini-NF-Y. We evaluated the expression of NF-YC and found that mRNA levels are similar in different human tissues except in testis.