Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giulia Zanderighi is active.

Publication


Featured researches published by Giulia Zanderighi.


Journal of High Energy Physics | 2008

Scalar one-loop integrals for QCD

R. Keith Ellis; Giulia Zanderighi

We construct a basis set of infra-red and/or collinearly divergent scalar one-loop integrals and give analytic formulas, for tadpole, bubble, triangle and box integrals, regulating the divergences (ultra-violet, infra-red or collinear) by regularization in D = 4−2 dimensions. For scalar triangle integrals we give results for our basis set containing 6 divergent integrals. For scalar box integrals we give results for our basis set containing 16 divergent integrals. We provide analytic results for the 5 divergent box integrals in the basis set which are missing in the literature. Building on the work of van Oldenborgh, a general, publicly available code has been constructed, which calculates both finite and divergent one-loop integrals. The code returns the coefficients of 1/2,1/1 and 1/0 as complex numbers for an arbitrary tadpole, bubble, triangle or box integral.


Journal of High Energy Physics | 2011

W + W − , WZ and ZZ production in the POWHEG BOX

Tom Melia; Paolo Nason; Raoul Röntsch; Giulia Zanderighi

A bstractWe present an implementation of the vector boson pair production processes ZZ, W+W− and WZ within the POWHEG framework, which is a method that allows the interfacing of NLO calculations to shower Monte Carlo programs. The implementation is built within the POWHEG BOX package. The Z/γ* interference, as well as singly resonant contributions, are properly included. We also considered interference terms arising from identical leptons in the final state. As a result, all contributions leading to the desired four-lepton system have been included in the calculation, with the sole exception of the interference between ZZ and W+W− in the production of a pair of same-flavour, oppositely charged fermions and a pair of neutrinos, which we show to be fully negligible. Anomalous trilinear couplings can be also set in the program, and we give some examples of their effect at the LHC. We have made the relevant code available at the POWHEG BOX web site.


Physics Reports | 2012

One-loop calculations in quantum field theory: From Feynman diagrams to unitarity cuts

R. Keith Ellis; Zoltan Kunszt; Kirill Melnikov; Giulia Zanderighi

The success of the experimental program at the Tevatron re-inforced the idea that precision physics at hadron colliders is desirable and, indeed, possible. The Tevatron data strongly suggests that one-loop computations in QCD describe hard scattering well. Extrapolating this observation to the LHC, we conclude that knowledge of many short-distance processes at next-to-leading order may be required to describe the physics of hard scattering. While the field of one-loop computations is quite mature, parton multiplicities in hard LHC events are so high that traditional computational techniques become inefficient. Recently new approaches based on unitarity have been developed for calculating one-loop scattering amplitudes in quantum field theory. These methods are especially suitable for the description of multi-particle processes in QCD and are amenable to numerical implementations. We present a systematic pedagogical description of both conceptual and technical aspects of the new methods.


Journal of High Energy Physics | 2012

MINLO: multi-scale improved NLO

Keith Hamilton; Paolo Nason; Giulia Zanderighi

A bstractIn the present work we consider the assignment of the factorization and renormalization scales in hadron collider processes with associated jet production, at next-to-leading order (NLO) in perturbation theory. We propose a simple, definite prescription to this end, including Sudakov form factors to consistently account for the distinct kinematic scales occuring in such collisions. The scheme yields results that are accurate at NLO and, for a large class of observables, it resums to all orders the large logarithms that arise from kinematic configurations involving disparate scales. In practical terms the method is most simply understood as an NLO extension of the matrix element reweighting procedure employed in tree level matrix element-parton shower merging algorithms. By way of a proof-of-concept, we apply the method to Higgs and Z boson production in association with up to two jets.


Journal of High Energy Physics | 2008

On the Numerical Evaluation of One-Loop Amplitudes: The Gluonic Case

Walter T. Giele; Giulia Zanderighi

We develop an algorithm of polynomial complexity for evaluating one-loop amplitudes with an arbitrary number of external particles. The algorithm is implemented in the Rocket program. Starting from particle vertices given by Feynman rules, tree amplitudes are constructed using recursive relations. The tree amplitudes are then used to build one-loop amplitudes using an integer dimension on-shell cut method. As a first application we considered only three and four gluon vertices calculating the pure gluonic one-loop amplitudes for arbitrary external helicity or polarization states. We compare our numerical results to analytical results in the literature, analyze the time behavior of the algorithm and the accuracy of the results, and give explicit results for fixed phase space points for up to twenty external gluons.


Physical Review Letters | 2012

Higgs- and Z-boson Production with a Jet Veto

Andrea Banfi; Pier Francesco Monni; Gavin P. Salam; Giulia Zanderighi

We derive first next-to-next-to-leading logarithmic resummations for jet-veto efficiencies in Higgs and Z-boson production at hadron colliders. Matching with next-to-next-to-leading order results allows us to provide a range of phenomenological predictions for the LHC, including cross-section results, detailed uncertainty estimates, and comparisons to current widely used tools.


Journal of High Energy Physics | 2013

NNLOPS simulation of Higgs boson production

Keith Hamilton; Paolo Nason; Giulia Zanderighi

A bstractWe detail a simulation of Higgs boson production via gluon fusion, accurate at next-to-next-to-leading order in the strong coupling, including matching to a parton shower, yielding a fully exclusive, hadron-level description of the final-state. The approach relies on the Powheg method for merging the NLO Higgs plus jet cross-section with the parton shower, and on the Minlo method to simultaneously achieve NLO accuracy for inclusive Higgs boson production. The NNLO accuracy is reached by a reweighting procedure making use of the Hnnlo program.


Journal of High Energy Physics | 2009

Generalized unitarity at work: First NLO QCD results for hadronic W+3 jet production

R. Keith Ellis; Kirill Melnikov; Giulia Zanderighi

We compute the leading color, next-to-leading order QCD corrections to the dominant partonic channels for the production of a W boson in association with three jets at the Tevatron and the LHC. This is the first application of generalized unitarity for realistic one-loop calculations. The method performs well in this non-trivial test and offers great promise for the future.


Computer Physics Communications | 2010

A Proposal for a standard interface between Monte Carlo tools and one-loop programs

T. Binoth; F. Boudjema; Günther Dissertori; Achilleas Lazopoulos; Ansgar Denner; Stefan Dittmaier; Rikkert Frederix; Nicolas Greiner; Stefan Höche; Walter T. Giele; Peter Skands; J. Winter; T. Gleisberg; Jennifer Archibald; G. Heinrich; Frank Krauss; D. Maître; Manuel Huber; J. Huston; N. Kauer; Fabio Maltoni; Carlo Oleari; Giampiero Passarino; R. Pittau; S. Pozzorini; Thomas Reiter; Steffen Schumann; Giulia Zanderighi

Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarises the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV Colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs. Dedicated to the memory of, and in tribute to, Thomas Binoth, who led the effort to develop this proposal for Les Houches 2009. Thomas led the discussions, set up the subgroups, collected the contributions, and wrote and edited this paper. He made a promise that the paper would be on the arXiv the first week of January, and we are faithfully fulfilling his promise. In his honour, we would like to call this the Binoth Les Houches Accord.


Journal of High Energy Physics | 2010

Phenomenology of event shapes at hadron colliders

Andrea Banfi; Gavin P. Salam; Giulia Zanderighi

We present results for matched distributions of a range of dijet event shapes at hadron colliders, combining next-to-leading logarithmic (NLL) accuracy in the resummation exponent, next-to-next-to leading logarithmic (NNLL) accuracy in its expansion and next-to-leading order (NLO) accuracy in a pure αs expansion. This is the first time that such a matching has been carried out for hadronic final-state observables at hadron colliders. We compare our results to Monte Carlo predictions, with and without matching to multi-parton tree-level fixed-order calculations. These studies suggest that hadron-collider event shapes have significant scope for constraining both perturbative and non-perturbative aspects of hadron-collider QCD. The differences between various calculational methods also highlight the limits of relying on simultaneous variations of renormalisation and factorisation scale in making reliable estimates of uncertainties in QCD predictions. We also discuss the sensitivity of event shapes to the topology of multi-jet events, which are expected to appear in many New Physics scenarios.

Collaboration


Dive into the Giulia Zanderighi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge