Giuliano Cecchi
Food and Agriculture Organization
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giuliano Cecchi.
International Journal of Health Geographics | 2010
Pere P. Simarro; Giuliano Cecchi; Massimo Paone; José R. Franco; Abdoulaye Diarra; José A Ruiz; Eric M. Fèvre; Fabrice Courtin; Raffaele C. Mattioli; Jean Jannin
BackgroundFollowing World Health Assembly resolutions 50.36 in 1997 and 56.7 in 2003, the World Health Organization (WHO) committed itself to supporting human African trypanosomiasis (HAT)-endemic countries in their efforts to remove the disease as a public health problem. Mapping the distribution of HAT in time and space has a pivotal role to play if this objective is to be met. For this reason WHO launched the HAT Atlas initiative, jointly implemented with the Food and Agriculture Organization of the United Nations, in the framework of the Programme Against African Trypanosomosis.ResultsThe distribution of HAT is presented for 23 out of 25 sub-Saharan countries having reported on the status of sleeping sickness in the period 2000 - 2009. For the two remaining countries, i.e. Angola and the Democratic Republic of the Congo, data processing is ongoing. Reports by National Sleeping Sickness Control Programmes (NSSCPs), Non-Governmental Organizations (NGOs) and Research Institutes were collated and the relevant epidemiological data were entered in a database, thus incorporating (i) the results of active screening of over 2.2 million people, and (ii) cases detected in health care facilities engaged in passive surveillance. A total of over 42 000 cases of HAT and 6 000 different localities were included in the database. Various sources of geographic coordinates were used to locate the villages of epidemiological interest. The resulting average mapping accuracy is estimated at 900 m.ConclusionsFull involvement of NSSCPs, NGOs and Research Institutes in building the Atlas of HAT contributes to the efficiency of the mapping process and it assures both the quality of the collated information and the accuracy of the outputs. Although efforts are still needed to reduce the number of undetected and unreported cases, the comprehensive, village-level mapping of HAT control activities over a ten-year period ensures a detailed and reliable representation of the known geographic distribution of the disease. Not only does the Atlas serve research and advocacy, but, more importantly, it provides crucial evidence and a valuable tool for making informed decisions to plan and monitor the control of sleeping sickness.
PLOS Neglected Tropical Diseases | 2012
Pere P. Simarro; Giuliano Cecchi; José R. Franco; Massimo Paone; Abdoulaye Diarra; José Antonio Ruiz-Postigo; Eric M. Fèvre; Raffaele C. Mattioli; Jean Jannin
Background Human African trypanosomiasis (HAT), also known as sleeping sickness, persists as a public health problem in several sub-Saharan countries. Evidence-based, spatially explicit estimates of population at risk are needed to inform planning and implementation of field interventions, monitor disease trends, raise awareness and support advocacy. Comprehensive, geo-referenced epidemiological records from HAT-affected countries were combined with human population layers to map five categories of risk, ranging from “very high” to “very low,” and to estimate the corresponding at-risk population. Results Approximately 70 million people distributed over a surface of 1.55 million km2 are estimated to be at different levels of risk of contracting HAT. Trypanosoma brucei gambiense accounts for 82.2% of the population at risk, the remaining 17.8% being at risk of infection from T. b. rhodesiense. Twenty-one million people live in areas classified as moderate to very high risk, where more than 1 HAT case per 10,000 inhabitants per annum is reported. Discussion Updated estimates of the population at risk of sleeping sickness were made, based on quantitative information on the reported cases and the geographic distribution of human population. Due to substantial methodological differences, it is not possible to make direct comparisons with previous figures for at-risk population. By contrast, it will be possible to explore trends in the future. The presented maps of different HAT risk levels will help to develop site-specific strategies for control and surveillance, and to monitor progress achieved by ongoing efforts aimed at the elimination of sleeping sickness.
Global Change Biology | 2015
Steffen Fritz; Linda See; Ian McCallum; Liangzhi You; Andriy Bun; Elena Moltchanova; Martina Duerauer; Fransizka Albrecht; C. Schill; Christoph Perger; Petr Havlik; A. Mosnier; Philip K. Thornton; Ulrike Wood-Sichra; Mario Herrero; Inbal Becker-Reshef; Christopher O. Justice; Matthew C. Hansen; Peng Gong; Sheta Abdel Aziz; Anna Cipriani; Renato Cumani; Giuliano Cecchi; Giulia Conchedda; Stefanus Ferreira; Adriana Gomez; Myriam Haffani; François Kayitakire; Jaiteh Malanding; Rick Mueller
A new 1 km global IIASA-IFPRI cropland percentage map for the baseline year 2005 has been developed which integrates a number of individual cropland maps at global to regional to national scales. The individual map products include existing global land cover maps such as GlobCover 2005 and MODIS v.5, regional maps such as AFRICOVER and national maps from mapping agencies and other organizations. The different products are ranked at the national level using crowdsourced data from Geo-Wiki to create a map that reflects the likelihood of cropland. Calibration with national and subnational crop statistics was then undertaken to distribute the cropland within each country and subnational unit. The new IIASA-IFPRI cropland product has been validated using very high-resolution satellite imagery via Geo-Wiki and has an overall accuracy of 82.4%. It has also been compared with the EarthStat cropland product and shows a lower root mean square error on an independent data set collected from Geo-Wiki. The first ever global field size map was produced at the same resolution as the IIASA-IFPRI cropland map based on interpolation of field size data collected via a Geo-Wiki crowdsourcing campaign. A validation exercise of the global field size map revealed satisfactory agreement with control data, particularly given the relatively modest size of the field size data set used to create the map. Both are critical inputs to global agricultural monitoring in the frame of GEOGLAM and will serve the global land modelling and integrated assessment community, in particular for improving land use models that require baseline cropland information. These products are freely available for downloading from the http://cropland.geo-wiki.org website.
Journal of Travel Medicine | 2012
Pere P. Simarro; José R. Franco; Giuliano Cecchi; Massimo Paone; Abdoulaye Diarra; José A. Ruiz Postigo; Jean Jannin
BACKGROUND Human African trypanosomiasis (HAT) can affect travelers to sub-Saharan Africa, as well as migrants from disease endemic countries (DECs), posing diagnosis challenges to travel health services in non-disease endemic countries (non-DECs). METHODS Cases reported in journals have been collected through a bibliographic research and complemented by cases reported to the World Health Organization (WHO) during the process to obtain anti-trypanosome drugs. These drugs are distributed to DECs solely by WHO. Drugs are also provided to non-DECs when an HAT case is diagnosed. However, in non-DEC pentamidine can also be purchased in the market due to its indication to treat Pneumocystis and Leishmania infections. Any request for drugs from non-DECs should be accompanied by epidemiological and clinical data on the patient. RESULTS During the period 2000 to 2010, 94 cases of HAT were reported in 19 non-DECs. Seventy-two percent of them corresponded to the Rhodesiense form, whereas 28% corresponded to the Gambiense. Cases of Rhodesiense HAT were mainly diagnosed in tourists after short visits to DECs, usually within a few days of return. The majority of them were in first stage. Initial misdiagnosis with malaria or tick-borne diseases was frequent. Cases of Gambiense HAT were usually diagnosed several months after initial examination and subsequent to a variety of misdiagnoses. The majority were in second stage. Patients affected were expatriates living in DECs for extended periods and refugees or economic migrants from DECs. CONCLUSIONS The risk of HAT in travelers and migrants, albeit low, cannot be overlooked. In non-DECs, rarity, nonspecific symptoms, and lack of knowledge and awareness in health staff make diagnosis difficult. Misdiagnosis is frequent, thus leading to invasive diagnosis methods, unnecessary treatments, and increased risk of fatality. Centralized distribution of drugs for HAT by WHO enables an HAT surveillance system for non-DECs to be maintained. This system provides valuable information on disease transmission and complements data collected in DECs.
Preventive Veterinary Medicine | 2013
A.P.M. Shaw; Stephen J. Torr; Charles Waiswa; Giuliano Cecchi; G.R.W. Wint; Raffaele C. Mattioli; Timothy P. Robinson
Decision-making and financial planning for tsetse control is complex, with a particularly wide range of choices to be made on location, timing, strategy and methods. This paper presents full cost estimates for eliminating or continuously controlling tsetse in a hypothetical area of 10,000km(2) located in south-eastern Uganda. Four tsetse control techniques were analysed: (i) artificial baits (insecticide-treated traps/targets), (ii) insecticide-treated cattle (ITC), (iii) aerial spraying using the sequential aerosol technique (SAT) and (iv) the addition of the sterile insect technique (SIT) to the insecticide-based methods (i-iii). For the creation of fly-free zones and using a 10% discount rate, the field costs per km(2) came to US
The Lancet | 2017
Philippe Büscher; Giuliano Cecchi; Vincent Jamonneau; Gerardo Priotto
283 for traps (4 traps per km(2)), US
International Journal of Health Geographics | 2009
Giuliano Cecchi; Massimo Paone; José R. Franco; Eric M. Fèvre; Abdoulaye Diarra; José A Ruiz; Raffaele C. Mattioli; Pere P. Simarro
30 for ITC (5 treated cattle per km(2) using restricted application), US
PLOS Neglected Tropical Diseases | 2015
Pere P. Simarro; Giuliano Cecchi; José R. Franco; Massimo Paone; Abdoulaye Diarra; Gerardo Priotto; Raffaele C. Mattioli; Jean Jannin
380 for SAT and US
Emerging Infectious Diseases | 2011
Pere P. Simarro; Giuliano Cecchi; José R. Franco; Massimo Paone; Eric M. Fèvre; Abdoulaye Diarra; José A. Ruiz Postigo; Raffaele C. Mattioli; Jean Jannin
758 for adding SIT. The inclusion of entomological and other preliminary studies plus administrative overheads adds substantially to the overall cost, so that the total costs become US
International Journal of Health Geographics | 2014
Pere P. Simarro; Giuliano Cecchi; José R. Franco; Massimo Paone; Abdoulaye Diarra; José Antonio Ruiz-Postigo; Raffaele C. Mattioli; Jean Jannin
482 for traps, US