Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuliano Di Baldassarre is active.

Publication


Featured researches published by Giuliano Di Baldassarre.


Water Resources Research | 2015

Debates—Perspectives on socio‐hydrology: Capturing feedbacks between physical and social processes

Giuliano Di Baldassarre; Alberto Viglione; Gemma Carr; Linda Kuil; Kun Yan; Luigia Brandimarte; Günter Blöschl

In flood risk assessment, there remains a lack of analytical frameworks capturing the dynamics emerging from two-way feedbacks between physical and social processes, such as adaptation and levee effect. The former, “adaptation effect”, relates to the observation that the occurrence of more frequent flooding is often associated with decreasing vulnerability. The latter, “levee effect”, relates to the observation that the non-occurrence of frequent flooding (possibly caused by flood protection structures, e.g. levees) is often associated to increasing vulnerability. As current analytical frameworks do not capture these dynamics, projections of future flood risk are not realistic. In this paper, we develop a new approach whereby the mutual interactions and continuous feedbacks between floods and societies are explicitly accounted for. Moreover, we show an application of this approach by using a socio-hydrological model to simulate the behavior of two main prototypes of societies: green societies, which cope with flooding by resettling out of flood-prone areas; and technological societies, which deal with flooding also by building levees or dikes. This application shows that the proposed approach is able to capture and explain the aforementioned dynamics (i.e. adaptation and levee effect) and therefore contribute to a better understanding of changes in flood risk, within an iterative process of theory development and empirical research.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2010

Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches

Giuliano Di Baldassarre; Guy Schumann; Paul D. Bates; Jim E Freer; Keith Beven

Abstract Different methodologies for flood-plain mapping are analysed and discussed by comparing deterministic and probabilistic approaches using hydrodynamic numerical solutions. In order to facilitate the critical discussion, state-of-art techniques in the field of flood inundation modelling are applied to a specific test site (River Dee, UK). Specifically, different flood-plain maps are derived for this test site. A first map is built by applying an advanced deterministic approach: use of a fully two-dimensional finite element model (TELEMAC-2D), calibrated against a historical flood extent, to derive a 1-in-100 year flood inundation map. A second map is derived by using a probabilistic approach: use of a simple raster-based inundation model (LISFLOOD-FP) to derive an uncertain flood extent map predicting the 1-in-100 year event conditioned on the extent of the 2006 flood. The flood-plain maps are then compared and the advantages and disadvantages of the two different approaches are critically discussed. Citation Di Baldassarre, G., Schumann, G., Bates, P. D., Freer, J. E. & Beven, K. J. (2010) Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches. Hydrol. Sci. J. 55(3), 364–376.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2011

Future hydrology and climate in the River Nile basin: a review

Giuliano Di Baldassarre; Mohamed Elshamy; Ann van Griensven; Eman Soliman; Max Kigobe; Preksedis Marco Ndomba; J. N. Mutemi; Francis Mutua; Semu A. Moges; Yunqing Xuan; Dimitri P. Solomatine; Stefan Uhlenbrook

Abstract A critical discussion of recent studies that analysed the effects of climate change on the water resources of the River Nile Basin (RNB) is presented. First, current water-related issues on the RNB showing the particular vulnerability to environmental changes of this large territory are described. Second, observed trends in hydrological data (such as temperature, precipitation, river discharge) as described in the recent literature are presented. Third, recent modelling exercises to quantify the effects of climate changes on the RNB are critically analysed. The many sources of uncertainty affecting the entire modelling chain, including climate modelling, spatial and temporal downscaling, hydrological modelling and impact assessment are also discussed. In particular, two contrasting issues are discussed: the need to better recognize and characterize the uncertainty of climate change impacts on the hydrology of the RNB, and the necessity to effectively support decision-makers and propose suitable adaptation strategies and measures. The principles of a code of good practice in climate change impact studies based on the explicit handling of various sources of uncertainty are outlined. Citation Di Baldassarre, G., Elshamy, M., van Griensven, A., Soliman, E., Kigobe, M., Ndomba, P., Mutemi, J., Mutua, F., Moges, S., Xuan, J.-Q., Solomatine, D. & Uhlenbrook, S. (2011) Future hydrology and climate in the River Nile basin: a review. Hydrol. Sci. J. 56(2), 199–211.


Climatic Change | 2016

Increasing flood risk under climate change: a pan-European assessment of the benefits of four adaptation strategies

Lorenzo Alfieri; Luc Feyen; Giuliano Di Baldassarre

Future flood risk in Europe is likely to increase due to a combination of climatic and socio-economic drivers. Effective adaptation strategies need to be implemented to limit the impact of river flooding on population and assets. This research builds upon a recently developed flood risk assessment framework at European scale to explore the benefits of adaptation against extreme floods. The effect of implementing four different adaptation measures is simulated in the modeling framework. Measures include the rise of flood protections, reduction of the peak flows through water retention, reduction of vulnerability and relocation to safer areas. Their sensitivity is assessed in several configurations under a high-end global warming scenario over the time range 1976–2100. Results suggest that the future increase in expected damage and population affected by river floods can be compensated through different configurations of adaptation measures. The adaptation efforts should favor measures targeted at reducing the impacts of floods, rather than trying to avoid them. Conversely, adaptation plans only based on rising flood protections have the effect of reducing the frequency of small floods and exposing the society to less-frequent but catastrophic floods and potentially long recovery processes.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2016

Panta Rhei 2013–2015: global perspectives on hydrology, society and change

Hilary McMillan; Alberto Montanari; Christophe Cudennec; Hubert H. G. Savenije; Heidi Kreibich; Tobias Krueger; Junguo Liu; Alfonso Mejia; Anne F. Van Loon; Hafzullah Aksoy; Giuliano Di Baldassarre; Yan Huang; Dominc Mazvimavi; M. Rogger; Bellie Sivakumar; Tatiana Bibikova; Attilo Castellarin; Yangbo Chen; David Finger; Alexander Gelfan; David M. Hannah; Arjen Ysbert Hoekstra; Hongyi Li; Shreedhar Maskey; Thibault Mathevet; Ana Mijic; Adrián Pedrozo Acuña; María José Polo; Victor Rosales; Paul Smith

ABSTRACT In 2013, the International Association of Hydrological Sciences (IAHS) launched the hydrological decade 2013–2022 with the theme “Panta Rhei: Change in Hydrology and Society”. The decade recognizes the urgency of hydrological research to understand and predict the interactions of society and water, to support sustainable water resource use under changing climatic and environmental conditions. This paper reports on the first Panta Rhei biennium 2013–2015, providing a comprehensive resource that describes the scope and direction of Panta Rhei. We bring together the knowledge of all the Panta Rhei working groups, to summarize the most pressing research questions and how the hydrological community is progressing towards those goals. We draw out interconnections between different strands of research, and reflect on the need to take a global view on hydrology in the current era of human impacts and environmental change. Finally, we look back to the six driving science questions identified at the outset of Panta Rhei, to quantify progress towards those aims. Editor D. Koutsoyiannis; Associate editor not assigned


Earth’s Future | 2017

Adaptation to flood risk - results of international paired flood event studies

Heidi Kreibich; Giuliano Di Baldassarre; Sergiy Vorogushyn; J.C.J.H. Aerts; Heiko Apel; Giuseppe T. Aronica; Karsten Arnbjerg-Nielsen; Laurens M. Bouwer; P. Bubeck; Tommaso Caloiero; Do Thi Chinh; Maria Cortès; Animesh K. Gain; Vincenzo Giampá; Christian Kuhlicke; Zbigniew W. Kundzewicz; M. C. Llasat; Johanna Mård; Piotr Matczak; Maurizio Mazzoleni; Daniela Molinari; Nguyen Viet Dung; Olga Petrucci; Kai Schröter; Kymo Slager; Annegret H. Thieken; Philip J. Ward; Bruno Merz

As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro-climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2016

The seventh facet of uncertainty: wrong assumptions, unknowns and surprises in the dynamics of human-water systems

Giuliano Di Baldassarre; Luigi Brandimarte; Keith Beven

ABSTRACT The scientific literature has focused on uncertainty as randomness, while limited credit has been given to what we call here the “seventh facet of uncertainty”, i.e. lack of knowledge. This paper identifies three types of lack of understanding: (i) known unknowns, which are things we know we don’t know; (ii) unknown unknowns, which are things we don’t know we don’t know; and (iii) wrong assumptions, things we think we know, but we actually don’t know. Here we discuss each of these with reference to the study of the dynamics of human–water systems, which is one of the main topics of Panta Rhei, the current scientific decade of the International Association of Hydrological Sciences (IAHS), focusing on changes in hydrology and society. In the paper, we argue that interdisciplinary studies of socio-hydrological dynamics leading to a better understanding of human–water interactions can help in coping with wrong assumptions and known unknowns. Also, being aware of the existence of unknown unknowns, and their potential capability to generate surprises or black swans, suggests the need to complement top-down approaches, based on quantitative predictions of water-related hazards, with bottom-up approaches, based on societal vulnerabilities and possibilities of failure. Editor D. Koutsoyiannis; Associate editor S. Weijs


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2014

An entropy approach for the optimization of cross-section spacing for river modelling

Elena Ridolfi; Leonardo Alfonso; Giuliano Di Baldassarre; Francesco Dottori; Fabio Russo; Francesco Napolitano

Abstract An accurate definition of river geometry is essential to implement one-dimensional (1D) hydraulic models and, in particular, appropriate spacing between cross-sections is key for capturing a river’s hydraulic behaviour. This work explores the potential of an entropy-based approach, as a complementary method to existing guidelines, to determine the optimal number of cross-sections to support 1D hydraulic modelling. To this end, given a redundant collection of existing cross-sections, a location subset is selected minimizing total correlation (as a measure of redundancy) and maximizing joint entropy (as a measure of information content). The problem is posed as a multi-objective optimization problem and solved using a genetic algorithm: the Non-dominated Sorting Genetic Algorithm (NSGA)-II. The proposed method is applied to a river reach of the Po River (Italy) and compared to standard guidelines for 1D hydraulic modelling. Cross-sections selected through the proposed methodology were found to provide an accurate description of the flood water profile, while optimizing computational efficiency. Editor D. Koutsoyiannis Citation Ridolfi, E., Alfonso, L., Di Baldassarre, G., Dottori, F., Russo, F., and Napolitano, F., 2013. An entropy approach for the optimization of cross-section spacing for river modelling. Hydrological Sciences Journal, 59 (1), 126–137.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2017

Socio-hydrological modelling of flood-risk dynamics: comparing the resilience of green and technological systems

Alessio Ciullo; Alberto Viglione; Attilio Castellarin; Massimiliano Crisci; Giuliano Di Baldassarre

ABSTRACT This work aims to provide a dynamic assessment of flood risk and community resilience by explicitly accounting for variable human behaviour, e.g. risk-taking and awareness-raising attitudes. We consider two different types of socio-hydrological systems: green systems, whereby societies deal with risk only via non-structural measures, and technological systems, whereby risk is dealt with also by structural measures, such as levees. A stylized model of human–flood interactions is first compared to real-world data collected at two test sites (People’s Republic of Bangladesh and the city of Rome, Italy) and then used to explore plausible trajectories of flood risk. The results show that flood risk in technological systems tends to be significantly lower than in green systems. However, technological systems may undergo catastrophic events, which lead to much higher losses. Furthermore, green systems prove to be more resilient than technological ones, which makes them more capable of withstanding environmental and social changes. EDITOR D. Koutsoyiannis ASSOCIATE EDITOR not assigned


Journal of Hydrologic Engineering | 2015

Exploring the Potential of SRTM Topography and Radar Altimetry to Support Flood Propagation Modeling: Danube Case Study

Kun Yan; Angelica Tarpanelli; Gabor Balint; Tommaso Moramarco; Giuliano Di Baldassarre

AbstractFlood inundation modeling is one of the essential steps in flood hazard mapping. However, the desirable input and calibration data for model building and evaluation are not sufficient or unavailable in many rivers and floodplains of the world. A potential opportunity to fill this gap is offered nowadays by global earth observation data, which can be obtained freely (or at low cost), such as the shuttle radar topography mission (SRTM) and radar altimetry. However, the actual usefulness of these data is still poorly investigated. This study attempts to assess the value of SRTM topography and radar altimetry in supporting flood-level predictions in data-poor areas. To this end, a hydraulic model of a 150-km reach of the Danube River was built by using SRTM topography as input data and radar altimetry of the 2006 flood event as calibration data. The model was then used to simulate the 2007 flood event and evaluated against water levels measured in four stream gauge stations. Model evaluation allows th...

Collaboration


Dive into the Giuliano Di Baldassarre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kun Yan

UNESCO-IHE Institute for Water Education

View shared research outputs
Top Co-Authors

Avatar

Alberto Viglione

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Dimitri P. Solomatine

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Schumann

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Günter Blöschl

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge