Giulio Cimini
University of Fribourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giulio Cimini.
Physical Review Letters | 2011
Matus Medo; Giulio Cimini; Stanislao Gualdi
We show that to explain the growth of the citation network by preferential attachment (PA), one has to accept that individual nodes exhibit heterogeneous fitness values that decay with time. While previous PA-based models assumed either heterogeneity or decay in isolation, we propose a simple analytically treatable model that combines these two factors. Depending on the input assumptions, the resulting degree distribution shows an exponential, log-normal or power-law decay, which makes the model an apt candidate for modeling a wide range of real systems.
PLOS ONE | 2011
Tao Zhou; Matus Medo; Giulio Cimini; Zi-Ke Zhang; Yi-Cheng Zhang
The study of the organization of social networks is important for the understanding of opinion formation, rumor spreading, and the emergence of trends and fashion. This paper reports empirical analysis of networks extracted from four leading sites with social functionality (Delicious, Flickr, Twitter and YouTube) and shows that they all display a scale-free leadership structure. To reproduce this feature, we propose an adaptive network model driven by social recommending. Artificial agent-based simulations of this model highlight a “good get richer” mechanism where users with broad interests and good judgments are likely to become popular leaders for the others. Simulations also indicate that the studied social recommendation mechanism can gradually improve the user experience by adapting to tastes of its users. Finally we outline implications for real online resource-sharing systems.
PLOS ONE | 2014
Giulio Cimini; Andrea Gabrielli; Francesco Sylos Labini
We use citation data of scientific articles produced by individual nations in different scientific domains to determine the structure and efficiency of national research systems. We characterize the scientific fitness of each nation—that is, the competitiveness of its research system—and the complexity of each scientific domain by means of a non-linear iterative algorithm able to assess quantitatively the advantage of scientific diversification. We find that technological leading nations, beyond having the largest production of scientific papers and the largest number of citations, do not specialize in a few scientific domains. Rather, they diversify as much as possible their research system. On the other side, less developed nations are competitive only in scientific domains where also many other nations are present. Diversification thus represents the key element that correlates with scientific and technological competitiveness. A remarkable implication of this structure of the scientific competition is that the scientific domains playing the role of “markers” of national scientific competitiveness are those not necessarily of high technological requirements, but rather addressing the most “sophisticated” needs of the society.
Physica A-statistical Mechanics and Its Applications | 2011
Dong Wei; Tao Zhou; Giulio Cimini; Pei Wu; Weiping Liu; Yi-Cheng Zhang
Recommender systems represent an important tool for news distribution on the Internet. In this work we modify a recently proposed social recommendation model in order to deal with no explicit ratings of users on news. The model consists of a network of users which continually adapts in order to achieve an efficient news traffic. To optimize the network’s topology we propose different stochastic algorithms that are scalable with respect to the network’s size. Agent-based simulations reveal the features and the performance of these algorithms. To overcome the resultant drawbacks of each method we introduce two improved algorithms and show that they can optimize the network’s topology almost as fast and effectively as other not-scalable methods that make use of much more information.
Scientific Reports | 2015
Giulio Cimini; Tiziano Squartini; Diego Garlaschelli; Andrea Gabrielli
We address a fundamental problem that is systematically encountered when modeling real-world complex systems of societal relevance: the limitedness of the information available. In the case of economic and financial networks, privacy issues severely limit the information that can be accessed and, as a consequence, the possibility of correctly estimating the resilience of these systems to events such as financial shocks, crises and cascade failures. Here we present an innovative method to reconstruct the structure of such partially-accessible systems, based on the knowledge of intrinsic node-specific properties and of the number of connections of only a limited subset of nodes. This information is used to calibrate an inference procedure based on fundamental concepts derived from statistical physics, which allows to generate ensembles of directed weighted networks intended to represent the real system—so that the real network properties can be estimated as their average values within the ensemble. We test the method both on synthetic and empirical networks, focusing on the properties that are commonly used to measure systemic risk. Indeed, the method shows a remarkable robustness with respect to the limitedness of the information available, thus representing a valuable tool for gaining insights on privacy-protected economic and financial systems.
Physical Review E | 2015
Giulio Cimini; Tiziano Squartini; Andrea Gabrielli; Diego Garlaschelli
A problem typically encountered when studying complex systems is the limitedness of the information available on their topology, which hinders our understanding of their structure and of the dynamical processes taking place on them. A paramount example is provided by financial networks, whose data are privacy protected: Banks publicly disclose only their aggregate exposure towards other banks, keeping individual exposures towards each single bank secret. Yet, the estimation of systemic risk strongly depends on the detailed structure of the interbank network. The resulting challenge is that of using aggregate information to statistically reconstruct a network and correctly predict its higher-order properties. Standard approaches either generate unrealistically dense networks, or fail to reproduce the observed topology by assigning homogeneous link weights. Here, we develop a reconstruction method, based on statistical mechanics concepts, that makes use of the empirical link density in a highly nontrivial way. Technically, our approach consists in the preliminary estimation of node degrees from empirical node strengths and link density, followed by a maximum-entropy inference based on a combination of empirical strengths and estimated degrees. Our method is successfully tested on the international trade network and the interbank money market, and represents a valuable tool for gaining insights on privacy-protected or partially accessible systems.
European Physical Journal B | 2011
Giulio Cimini; Matus Medo; Tao Zhou; Dong Wei; Yi-Cheng Zhang
Abstract. Recommender systems help people cope with the problem of information overload. A recently proposed adaptive news recommender model [M. Medo, Y.-C. Zhang, T. Zhou, Europhys. Lett. 88, 38005 (2009)] is based on epidemic-like spreading of news in a social network. By means of agent-based simulations we study a “good get richer” feature of the model and determine which attributes are necessary for a user to play a leading role in the network. We further investigate the filtering efficiency of the model as well as its robustness against malicious and spamming behaviour. We show that incorporating user reputation in the recommendation process can substantially improve the outcome.
Physical Review E | 2012
Giulio Cimini; Duanbing Chen; Matus Medo; Linyuan Lü; Yi-Cheng Zhang; Tao Zhou
The advent of the Internet and World Wide Web has led to unprecedent growth of the information available. People usually face the information overload by following a limited number of sources which best fit their interests. It has thus become important to address issues like who gets followed and how to allow people to discover new and better information sources. In this paper we conduct an empirical analysis of different online social networking sites and draw inspiration from its results to present different source selection strategies in an adaptive model for social recommendation. We show that local search rules which enhance the typical topological features of real social communities give rise to network configurations that are globally optimal. These rules create networks which are effective in information diffusion and resemble structures resulting from real social systems.
Scientific Reports | 2016
Stanislao Gualdi; Giulio Cimini; Kevin Primicerio; Riccardo Di Clemente; Damien Challet
Common asset holding by financial institutions (portfolio overlap) is nowadays regarded as an important channel for financial contagion with the potential to trigger fire sales and severe losses at the systemic level. We propose a method to assess the statistical significance of the overlap between heterogeneously diversified portfolios, which we use to build a validated network of financial institutions where links indicate potential contagion channels. The method is implemented on a historical database of institutional holdings ranging from 1999 to the end of 2013, but can be applied to any bipartite network. We find that the proportion of validated links (i.e. of significant overlaps) increased steadily before the 2007–2008 financial crisis and reached a maximum when the crisis occurred. We argue that the nature of this measure implies that systemic risk from fire sales liquidation was maximal at that time. After a sharp drop in 2008, systemic risk resumed its growth in 2009, with a notable acceleration in 2013. We finally show that market trends tend to be amplified in the portfolios identified by the algorithm, such that it is possible to have an informative signal about institutions that are about to suffer (enjoy) the most significant losses (gains).
Journal of Informetrics | 2016
Giulio Cimini; Andrea Zaccaria; Andrea Gabrielli
We discuss, at the macro-level of nations, the contribution of research funding and rate of international collaboration to research performance, with important implications for the “science of science policy”. In particular, we cross-correlate suitable measures of these quantities with a scientometric-based assessment of scientific success, studying both the average performance of nations and their temporal dynamics in the space defined by these variables during the last decade. We find significant differences among nations in terms of efficiency in turning (financial) input into bibliometrically measurable output, and we confirm that growth of international collaboration positively correlate with scientific success—with significant benefits brought by EU integration policies. Various geo-cultural clusters of nations naturally emerge from our analysis. We critically discuss the factors that potentially determine the observed patterns.