Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giulio Giovannetti is active.

Publication


Featured researches published by Giulio Giovannetti.


International Journal of Environmental Research and Public Health | 2009

Biological Effects and Safety in Magnetic Resonance Imaging: A Review

Hartwig; Giulio Giovannetti; Nicola Vanello; Massimo Lombardi; Luigi Landini; Silvana Simi

Since the introduction of Magnetic Resonance Imaging (MRI) as a diagnostic technique, the number of people exposed to electromagnetic fields (EMF) has increased dramatically. In this review, based on the results of a pioneer study showing in vitro and in vivo genotoxic effects of MRI scans, we report an updated survey about the effects of non-ionizing EMF employed in MRI, relevant for patients’ and workers’ safety. While the whole data does not confirm a risk hypothesis, it suggests a need for further studies and prudent use in order to avoid unnecessary examinations, according to the precautionary principle.


Mutation Research | 2008

Is the genotoxic effect of magnetic resonance negligible? Low persistence of micronucleus frequency in lymphocytes of individuals after cardiac scan.

Silvana Simi; Marta Casella; Daniele De Marchi; Valentina Hartwig; Giulio Giovannetti; Nicola Vanello; Sabrina Gabbriellini; Luigi Landini; Massimo Lombardi

Magnetic resonance imaging is a diagnostic technique widely used in medicine and showing a growing impact in cardiology. Biological effects associated to magnetic resonance electromagnetic fields have received far little attention, but it cannot be ruled out that these fields can alter DNA structure. The present study aimed at to identify possible DNA damage induced by magnetic resonance scan in humans. Lymphocyte cultures from healthy subjects had been exposed into magnetic resonance device for different times and under different variable magnetic exposure in order to build dose-effect curves, using micronuclei induction as biological marker. Replicate cultures were also left for 24h at room temperature before stimulation, to verify possible damage recovery. Furthermore, micronuclei induction and recovery up to 120h have been also evaluated in circulating lymphocytes of individuals after cardiac scan. A dose-dependent increase of micronuclei frequency was observed in vitro. However after 24h, the frequency returns to control value when the exposure is within diagnostic dosage. After in vivo scan, a significant increase in micronuclei is found till 24h, after the frequencies slowly return to control value.


Magnetic Resonance Materials in Physics Biology and Medicine | 2002

A fast and accurate simulator for the design of birdcage coils in MRI

Giulio Giovannetti; Luigi Landini; Maria Filomena Santarelli; Vincenzo Positano

The birdcage coils are extensively used in MRI systems since they introduce a high signal to noise ratio and a high radiofrequency magnetic field homogeneity that guarantee a large field of view. The present article describes the implementation of a birdcage coil simulator, operating in high-pass and low-pass modes, using magnetostatic analysis of the coil. Respect to other simulators described in literature, our simulator allows to obtain in short time not only the dominant frequency mode, but also the complete resonant frequency spectrum and the relevant magnetic field pattern with high accuracy. Our simulator accounts for all the inductances including the mutual inductances between conductors. Moreover, the inductance calculation includes an accurately birdcage geometry description and the effect of a radiofrequency shield. The knowledge of all the resonance modes introduced by a birdcage coil is twofold useful during birdcage coil design: —higher order modes should be pushed far from the fundamental one, —for particular applications, it is necessary to localize other resonant modes (as the Helmholtz mode) jointly to the dominant mode. The knowledge of the magnetic field pattern allows to a priori verify the field homogeneity created inside the coil, when varying the coil dimension and mainly the number of the coil legs. The coil is analyzed using equivalent circuit method. Finally, the simulator is validated by implementing a low-pass birdcage coil and comparing our data with the literature.


IEEE-ASME Transactions on Mechatronics | 2008

Sensing Glove for Brain Studies: Design and Assessment of Its Compatibility for fMRI With a Robust Test

Nicola Vanello; Valentina Hartwig; Mario Tesconi; Emiliano Ricciardi; Alessandro Tognetti; Giuseppe Zupone; Roger Gassert; Dominique Chapuis; Nicola Sgambelluri; Enzo Pasquale Scilingo; Giulio Giovannetti; Vincenzo Positano; Maria Filomena Santarelli; Antonio Bicchi; Pietro Pietrini; Danilo De Rossi; Luigi Landini

In this paper, we describe a biomimetic-fabric-based sensing glove that can be used to monitor hand posture and gesture. Our device is made of a distributed sensor network of piezoresistive conductive elastomers integrated into an elastic fabric. This solution does not affect natural movement and hand gestures, and can be worn for a long time with no discomfort. The glove could be fruitfully employed in behavioral and functional studies with functional MRI (fMRI) during specific tactile or motor tasks. To assess MR compatibility of the system, a statistical test on phantoms is introduced. This test can also be used for testing the compatibility of mechatronic devices designed to produce different stimuli inside the MR environment. We propose a statistical test to evaluate changes in SNR and time-domain standard deviations between image sequences acquired under different experimental conditions. fMRI experiments on subjects wearing the glove are reported. The reproducibility of fMRI results obtained with and without the glove was estimated. A good similarity between the activated regions was found in the two conditions.


Contrast Media & Molecular Imaging | 2012

Assessment of real-time myocardial uptake and enzymatic conversion of hyperpolarized [1-13C]pyruvate in pigs using slice selective magnetic resonance spectroscopy

Luca Menichetti; Francesca Frijia; Alessandra Flori; Florian Wiesinger; Vincenzo Lionetti; Giulio Giovannetti; Giovanni Donato Aquaro; Fabio A. Recchia; Jan Henrik Ardenkjaer-Larsen; Maria Filomena Santarelli; Massimo Lombardi

Hyperpolarization of ¹³C-labeled energy substrates enables the noninvasive detection and mapping of metabolic activity, in vivo, with magnetic resonance spectroscopy (MRS). Therefore, hyperpolarization and ¹³C MRS can potentially become a powerful tool to study the physiology of organs such as the heart, through the quantification of kinetic patterns under both normal and pathological conditions. In this study we assessed myocardial uptake and metabolism of hyperpolarized [1-¹³C]pyruvate in anesthetized pigs. Pyruvate metabolism was studied at baseline and during dobutamine-induced stimulation. We applied a numerical approach for spectral analysis and kinetic fitting (LSFIT/KIMOfit), making a comparison with a well-known jMRUI/AMARES analysis and γ-variate function, and we estimated the apparent conversion rate of hyperpolarized [1-¹³C]pyruvate into its downstream metabolites [1-¹³C]lactate, [1-¹³C]alanine and [¹³C]bicarbonate in a 3 T MR scanner. We detected an increase in the apparent kinetic constants (k(PX) ) for bicarbonate and lactate of two-fold during dobutamine infusion. These data correlate with the double product (rate-pressure product), an indirect parameter of cardiac oxygen consumption: we observed an increase in value by 46 ± 11% during inotropic stress. The proposed approach might be applied to future studies in models of cardiac disease and/or for the assessment of the pharmacokinetic properties of suitable ¹³C-enriched tracers for MRS.


Contrast Media & Molecular Imaging | 2015

Real-time cardiac metabolism assessed with hyperpolarized [1-13C]acetate in a large-animal model

Alessandra Flori; Matteo Liserani; Francesca Frijia; Giulio Giovannetti; Vincenzo Lionetti; Valentina Casieri; Vincenzo Positano; Giovanni Donato Aquaro; Fabio A. Recchia; Maria Filomena Santarelli; Luigi Landini; Jan Henrik Ardenkjaer-Larsen; Luca Menichetti

Dissolution-dynamic nuclear polarization (dissolution-DNP) for magnetic resonance (MR) spectroscopic imaging has recently emerged as a novel technique for noninvasive studies of the metabolic fate of biomolecules in vivo. Since acetate is the most abundant extra- and intracellular short-chain fatty acid, we focused on [1-(13) C]acetate as a promising candidate for a chemical probe to study the myocardial metabolism of a beating heart. The dissolution-DNP procedure of Na[1-(13) C]acetate for in vivo cardiac applications with a 3 T MR scanner was optimized in pigs during bolus injection of doses of up to 3 mmol. The Na[1-(13) C]acetate formulation was characterized by a liquid-state polarization of 14.2% and a T1Eff in vivo of 17.6 ± 1.7 s. In vivo Na[1-(13) C]acetate kinetics displayed a bimodal shape: [1-(13) C]acetyl carnitine (AcC) was detected in a slice covering the cardiac volume, and the signal of (13) C-acetate and (13) C-AcC was modeled using the total area under the curve (AUC) for kinetic analysis. A good correlation was found between the ratio AUC(AcC)/AUC(acetate) and the apparent kinetic constant of metabolic conversion, from [1-(13) C]acetate to [1-(13) C]AcC (kAcC ), divided by the AcC longitudinal relaxation rate (r1 ). Our study proved the feasibility and the limitations of administration of large doses of hyperpolarized [1-(13) C]acetate to study the myocardial conversion of [1-(13) C]acetate in [1-(13) C]acetyl-carnitine generated by acetyltransferase in healthy pigs.


NMR in Biomedicine | 2010

Noise correlations and SNR in phased-array MRS.

Nicola Martini; Maria Filomena Santarelli; Giulio Giovannetti; Matteo Milanesi; D. De Marchi; V. Positano; Luigi Landini

The acquisition of magnetic resonance spectroscopy (MRS) signals by multiple receiver coils can improve the signal‐to‐noise ratio (SNR) or alternatively can reduce the scan time maintaining a reliable SNR. However, using phased array coils in MRS studies requires efficient data processing and data combination techniques in order to exploit the sensitivity improvement of the phased array coil acquisition method. This paper describes a novel method for the combination of MRS signals acquired by phased array coils, even in presence of correlated noise between the acquisition channels. In fact, although it has been shown that electric and magnetic coupling mechanisms produce correlated noise in the coils, previous algorithms developed for MRS data combination have ignored this effect. The proposed approach takes advantage of a noise decorrelation stage to maximize the SNR of the combined spectra. In particular Principal Component Analysis (PCA) was exploited to project the acquired spectra in a subspace where the noise vectors are orthogonal. In this subspace the SNR weighting method will provide the optimal overall SNR. Performance evaluation of the proposed method is carried out on simulated 1H‐MRS signals and experimental results are obtained on phantom 1H‐MR spectra using a commercially available 8‐element phased array coil. Noise correlations between elements were generally low due to the optimal coil design, leading to a fair SNR gain (about 0.5%) in the center of the field of view (FOV). A greater SNR improvement was found in the peripheral FOV regions. Copyright


NMR in Biomedicine | 2012

How the signal-to-noise ratio influences hyperpolarized 13C dynamic MRS data fitting and parameter estimation.

Maria Filomena Santarelli; Vincenzo Positano; Giulio Giovannetti; Francesca Frijia; Luca Menichetti; Jan-Henrik Ardenkjaer-Larsen; Daniele De Marchi; Vincenzo Lionetti; Giovanni Donato Aquaro; Massimo Lombardi; Luigi Landini

MRS of hyperpolarized 13C‐labeled compounds represents a promising technique for in vivo metabolic studies. However, robust quantification and metabolic modeling are still important areas of investigation. In particular, time and spatial resolution constraints may lead to the analysis of MRS signals with low signal‐to‐noise ratio (SNR). The relationship between SNR and the precision of quantitative analysis for the evaluation of the in vivo kinetic behavior of metabolites is unknown. In this article, this topic is addressed by Monte Carlo simulations, covering the problem of MRS signal model parameter estimation, with strong emphasis on the peak amplitude and kinetic model parameters. The results of Monte Carlo simulation were confirmed by in vivo experiments on medium‐sized animals injected with hyperpolarized [1‐13C]pyruvate. The results of this study may be useful for the establishment of experimental planning and for the optimization of kinetic model estimation as a function of the SNR value. Copyright


Magnetic Resonance Imaging | 2011

B 1 + /actual flip angle and reception sensitivity mapping methods: simulation and comparison

Valentina Hartwig; Nicola Vanello; Giulio Giovannetti; Daniele De Marchi; Massimo Lombardi; Luigi Landini; Maria Filomena Santarelli

Knowledge of the spatial distribution of transmission field B(1)(+) and reception sensitivity maps is important in high-field (≥3 T) human magnetic resonance (MR) imaging for several reasons: these include post-acquisition correction of intensity inhomogeneities, which may affect the quality of images; modeling and design of radiofrequency (RF) coils and pulses; validating theoretical models for electromagnetic field calculations; testing the compatibility with MR environment of biomedical implants. Moreover, inhomogeneities in the RF field are an essential source of error for quantitative MR spectroscopy. Recent studies have also shown that B(1)(+) and reception sensitivity maps can be used for direct calculation of tissue electrical parameters and for estimating the local specific absorption rate (SAR) in vivo. Several B(1)(+) mapping techniques have been introduced in the past few years based on actual flip angle (FA) mapping, but, to date, none has emerged as a standard. For reception sensitivity calculation, the signal intensity equation can be used where the nominal FA distribution must be replaced with the actual FA distribution calculated by one of the B(1)(+) mapping techniques. This study introduces a quantitative comparison between two known methods for B(1)(+)/actual FA and reception sensitivity mapping: the double-angle method (DAM) and the fitting (FIT) method. Experimental data obtained using DAM and FIT methods are also compared with numerical simulation results.


Jacc-cardiovascular Imaging | 2013

3D CMR Mapping of Metabolism by Hyperpolarized 13C-Pyruvate in Ischemia-Reperfusion

Giovanni Donato Aquaro; Francesca Frijia; Vincenzo Positano; Luca Menichetti; Maria Filomena Santarelli; Jan Henrik Ardenkjaer-Larsen; Florian Wiesinger; Vincenzo Lionetti; Simone Lorenzo Romano; Giacomo Bianchi; Danilo Neglia; Giulio Giovannetti; Rolf F. Schulte; Fabio A. Recchia; Luigi Landini; Massimo Lombardi

The objective of this study was to evaluate the capability and accuracy of cardiac magnetic resonance with hyperpolarized [1-13C]-pyruvate using the fast 3-dimensional (3D) pulse sequence to detect the presence and regional distribution of transient cardiac metabolic changes in a pig model of

Collaboration


Dive into the Giulio Giovannetti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Menichetti

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge