Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giulio Marchesi is active.

Publication


Featured researches published by Giulio Marchesi.


Dental Materials | 2010

Contraction stress of low-shrinkage composite materials assessed with different testing systems

Giulio Marchesi; Lorenzo Breschi; Francesca Antoniolli; Roberto Di Lenarda; Jack L. Ferracane; Milena Cadenaro

OBJECTIVES The contraction stress of a silorane-based material and a new low-shrinkage nanohybrid composite were compared to three conventional dimethacrylate-based resin composites using two different measuring systems. It was hypothesized that the silorane-based material and the low-shrinkage nanohybrid composite would exhibit lower contraction stress than dimethacrylate-based composites irrespective of measuring system. METHODS The materials tested were Filtek Silorane LS (3M ESPE), Venus Diamond (Heraeus Kulzer), Tetric EvoCeram (Ivoclar Vivadent), Quixfil (Dentsply DeTrey), and Filtek Z250 (3M ESPE). Shrinkage stress was assessed using a stress-strain analyzer consisting of two opposing attachments, one connected to a load sensor and the other fixed to the device, or a system fixed to a universal testing machine with an extensometer as a feedback system. All specimens were light-cured with 20 J/cm(2); the contraction force (N) generated during polymerization was continuously recorded for 300 s. Contraction stress (MPa) was calculated at both 40 s and 300 s. Data were statistically analyzed by three-way ANOVA and Tukeys post hoc test (alpha=0.05). RESULTS Venus Diamond exhibited the lowest stress under both experimental conditions. Stress values scored as follows: Venus Diamond<Tetric EvoCeram<Filtek Silorane LS<Quixfil<Filtek Z250 (p<0.05). Stress values measured with the stress-strain analyzer were significantly lower than those measured with the universal testing machine with feedback. SIGNIFICANCE The hypothesis was partially rejected because only Venus Diamond exhibited the lowest stress values among the tested materials. Contraction stress was higher for all composites when measured in a test system with a feedback. This study confirms that simply reducing the shrinkage does not ensure reduced stress development in composites.


Journal of Dentistry | 2014

Adhesive performance of a multi-mode adhesive system: 1-Year in vitro study

Giulio Marchesi; Andrea Frassetto; A. Mazzoni; Fabianni Magalhães Apolonio; Marina Diolosà; Milena Cadenaro; Roberto Di Lenarda; David H. Pashley; Franklin R. Tay; L. Breschi

OBJECTIVES The aim of this study was to investigate the adhesive stability over time of a multi-mode one-step adhesive applied using different bonding techniques on human coronal dentine. The hypotheses tested were that microtensile bond strength (μTBS), interfacial nanoleakage expression and matrix metalloproteinases (MMPs) activation are not affected by the adhesive application mode (following the use of self-etch technique or with the etch-and-rinse technique on dry or wet dentine) or by ageing for 24h, 6 months and 1year in artificial saliva. METHODS Human molars were cut to expose middle/deep dentine and assigned to one of the following bonding systems (N=15): (1) Scotchbond Universal (3M ESPE) self-etch mode, (2) Scotchbond Universal etch-and-rinse technique on wet dentine, (3) Scotchbond Universal etch-and-rinse technique on dry dentine, and (4) Prime&Bond NT (Dentsply De Trey) etch-and-rinse technique on wet dentine (control). Specimens were processed for μTBS test in accordance with the non-trimming technique and stressed to failure after 24h, 6 months or 1 year. Additional specimens were processed and examined to assay interfacial nanoleakage and MMP expression. RESULTS At baseline, no differences between groups were found. After 1 year of storage, Scotchbond Universal applied in the self-etch mode and Prime&Bond NT showed higher μTBS compared to the other groups. The lowest nanoleakage expression was found for Scotchbond Universal applied in the self-etch mode, both at baseline and after storage. MMPs activation was found after application of each tested adhesive. CONCLUSIONS The results of this study support the use of the self-etch approach for bonding the tested multi-mode adhesive system to dentine due to improved stability over time. CLINICAL SIGNIFICANCE Improved bonding effectiveness of the tested universal adhesive system on dentine may be obtained if the adhesive is applied with the self-etch approach.


European Journal of Oral Sciences | 2009

Push‐out stress for fibre posts luted using different adhesive strategies

Annalisa Mazzoni; Giulio Marchesi; Milena Cadenaro; Giovanni Mazzotti; Roberto Di Lenarda; Marco Ferrari; Lorenzo Breschi

The influence of thermocycling on the bond strength of fibre posts cemented with different luting approaches was investigated. A total of 84 human incisors were selected for the study. Sixty teeth were assigned to one of the following adhesive/cement combinations for push-out bond-strength evaluation: group 1, XP Bond/CoreXFlow + DT Light-Post; group 2, Panavia F 2.0 + Tech 21; or group 3, RelyX Unicem + RelyX. Bonded specimens were cut into 1-mm-thick slabs and either thermocycled (40,000 cycles) or stored in artificial saliva (control specimens) before push-out bond-strength testing. Additional specimens were processed for quantitative interfacial nanoleakage analysis. Thermocycling decreased the bond strength in specimens of groups 2 and 3, but did not affect the specimens from group 1. No difference was observed among luting approaches in control specimens. Thermocycling resulted in increased silver nitrate deposition (i.e. interfacial nanoleakage) in all groups. Within the limitations of the study, the use of an etch-and-rinse adhesive in combination with a dual-cure cement to lute fiber posts is the most stable luting procedure if compared with a self-etch resin-based cement or a self-adhesive cement, as assayed by thermocycling of the bonded specimens.


Dental Materials | 2016

Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability—A literature review

Andrea Frassetto; Lorenzo Breschi; Gianluca Turco; Giulio Marchesi; Roberto Di Lenarda; Franklin R. Tay; David H. Pashley; Milena Cadenaro

OBJECTIVE Success in adhesive dentistry means long lasting restorations. However, there is substantial evidence that this ideal objective is not always achieved. Current research in this field aims at increasing the durability of resin-dentin bonds. The objective of this paper is to examine the fundamental processes responsible for the aging mechanisms involved in the degradation of resin-bonded interfaces and the potential approaches to prevent and counteract this degradation. METHODS PubMed searches on the hybrid layer degradation were carried out. Keywords were chosen to assess hybrid layer degradation for providing up-dated information on the basis of scientific coherence with the research objective. Approaches to prevent and counteract this degradation were also reviewed. RESULTS 148 peer-review articles in the English language between 1982 and 2015 were reviewed. Literature shows that resin-dentin bond degradation is a complex process, involving the hydrolysis of both the resin and the collagen fibril phases contained within the hybrid layer. Collagen fibers become vulnerable to mechanical and hydraulic fatigue, as well as degradation by host-derived proteases with collagenolytic activity (matrix metalloproteinases and cysteine cathepsins). Inhibition of the collagenolytic activity and the use of cross-linking agents are the two main strategies to increase the resistance of the hybrid layer to enzymatic degradation. SIGNIFICANCE This review analyzes the issues regarding the durability of the adhesive interface, and the techniques to create stable resin-dentin bonds able to resist the collagenolytic hydrolysis that are currently studied.


Dental Materials | 2009

Flowability of composites is no guarantee for contraction stress reduction

Milena Cadenaro; Giulio Marchesi; Francesca Antoniolli; Carel L. Davidson; Elettra De Stefano Dorigo; Lorenzo Breschi

OBJECTIVES The purpose of this study was to measure the contraction stress development of three flowable resin-composite materials (Grandio Flow, VOCO GmbH, Cuxhaven, Germany; Tetric Flow, Ivoclar Vivadent, Schaan, Liechtenstein; Filtek Supreme XT Flowable Restorative, 3M ESPE, ST. Paul, MN, USA) and an universal micro-hybrid composite resin (Filtek Z250, 3M ESPE, St. Paul, MN, USA) during photopolymerization with a halogen curing light, using a novel stress-measuring gauge. METHODS Curing shrinkage stress was measured using a stress-analyzer. Composites were polymerized with a halogen curing unit (VIP, Bisco Inc., Schaumburg, IL, USA) for 40s. The contraction force (N) generated during polymerization was continuously recorded for 180s after photo-initiation. Contraction stress (MPa) was calculated at 20s, 40s, 60s, 120s and 180s. Data were statistically analyzed. RESULTS Filtek Supreme XT Flowable Restorative exhibited the highest stress values compared to other materials (p<0.05), while the lowest values were recorded with Tetric Flow (p<0.05). Tetric Flow was also the only flowable composite showing stress values lower than the conventional composite Filtek Z250 (p<0.05). SIGNIFICANCE Flowable composites investigated with this experimental setup showed shrinkage stress comparable to conventional resin restorative materials, thus supporting the hypothesis that the use of flowable materials do not lead to marked stress reduction and the risk of debonding at the adhesive interface as a result of polymerization contraction is similar for both type of materials.


Dental Materials | 2009

Influence of chlorhexidine on the degree of conversion and E-modulus of experimental adhesive blends

Milena Cadenaro; D.H. Pashley; Giulio Marchesi; Marcela Carrilho; Francesca Antoniolli; Annalisa Mazzoni; F.R. Tay; R. Di Lenarda; Lorenzo Breschi

OBJECTIVES This study examined the effect of chlorhexidine (CHX) content on degree of conversion (DC) and E-modulus of experimental adhesive blends. The hypothesis tested was that increasing concentrations of CHX result in decreased DC and E-modulus in relation to adhesive hydrophilicity. METHODS Experimental adhesive blends with increasing hydrophilicity R2 (70% bisGMA, 28.75% TEGDMA); R3 (70% BisGMA, 28.75% HEMA); R4 (40% BisGMA, 30% TCDM, 28.75% TEGDMA); R5 (40% BisGMA, 30% BisMP, 28.75% HEMA) and different CHX concentrations (1 and 5%) were analyzed. 5% CHX could not be dissolved in R2. A differential scanning calorimeter was used to measure the DC of resin blends. Photopolymerized disks of the experimental comonomer mixtures (n=10/gp) were used to measure the E-modulus of each specimen using a biaxial flexure test. Data were analyzed with two-way ANOVA (resin type and CHX concentration) and Tukeys post hoc test. RESULTS The addition of 1% CHX did not significantly alter the DC of R2 and R3. Significant decrease in R3 DC values was observed when 5% CHX was added. CHX significantly increased the DC of R4 and R5. 1% CHX reduced the E-modulus of all resins (p<0.05) except for R2, in which the E-modulus was significantly increased (p<0.05). 5% CHX significantly reduced the E-modulus of resins R3 to R5 (p<0.05). SIGNIFICANCE In conclusion, increasing concentrations of CHX dissolved in resin blends had little adverse effect on DC but decreased the E-modulus 27-48% compared to controls. Solvation of CHX in ethanol prior to incorporation of CHX into R2 may permit higher CHX concentrations without lower polymer stiffness.


Dental Materials | 2012

Kinetics of polymerization and contraction stress development in self-adhesive resin cements.

Andrea Frassetto; Chiara Navarra; Giulio Marchesi; Gianluca Turco; R. Di Lenarda; Lorenzo Breschi; J.L. Ferracane; Milena Cadenaro

OBJECTIVES The aim of the study was to evaluate the contraction stress, microhardness and polymerization kinetics of three self-adhesive cements vs. conventional dual-cure resin cement. METHODS Cements tested were: RelyX Unicem (3M ESPE, St. Paul, MN, USA), MaxCem Elite (Kerr, Orange, CA, USA), Clearfil SA Cement (Kuraray, Tokyo, Japan) and Duolink (Bisco Inc., Schaumburg, IL, USA). Cements were irradiated with a LED-curing unit (bluephase, IvoclarVivadent) for 20 or 40 s and the contraction forces (N) generated during polymerization were continuously recorded for 6 h with a universal testing machine. Polymerization kinetics were monitored using micro-Raman spectroscopy and degree of conversion was calculated. Vickers microhardness was also recorded. All measurements were performed at 10 min and 6h. Data were statistically analyzed by three-way ANOVA with repeated measures and Tukeys post hoc test (α=0.05). RESULTS Irrespective of exposure time, stress analysis ranked in the following order: Clearfil SA Cement<MaxCem<RelyX Unicem≤Duolink (p<0.05). Stress was correlated with microhardness values (p<0.05). Kinetic curves showed that maximum degree of conversion was attained more quickly than maximum stress after light activation. SIGNIFICANCE The conventional resin-based cement showed higher stress values than the self-adhesive cements. The results were material-dependent and probably correlated to the composition of each material.


European Journal of Oral Sciences | 2011

Contraction stress, elastic modulus, and degree of conversion of three flowable composites

Milena Cadenaro; Barbara Codan; Chiara Navarra; Giulio Marchesi; Gianluca Turco; Roberto Di Lenarda; Lorenzo Breschi

The aim of this study was to measure the contraction stress of three flowable resin composites and to correlate the stress with the elastic modulus and the degree of conversion. One low-shrinkage (Venus Diamond Flow) and two conventional (Tetric EvoFlow and X-Flow) flowable composites were polymerized for 40s with a light-emitting diode (LED) curing unit. Contraction force was continuously recorded for 300s using a stress-analyser, and stress values were calculated at 40s and at 300s. The maximum stress rate was also calculated for each specimen. The elastic modulus of each composite was assayed using a biaxial flexural test, and degree of conversion was analysed with Raman spectroscopy. X-Flow exhibited higher stress values than the other tested materials. Venus Diamond Flow showed the lowest stress values at 40s and at 300s, and the lowest maximum stress rate. Stress values were correlated with elastic modulus but not with degree of conversion, which was comparable among all tested materials.


Journal of Adhesive Dentistry | 2013

Aging affects the adhesive interface of posts luted with self-adhesive cements: a 1-year study.

Giulio Marchesi; A. Mazzoni; Gianluca Turco; Milena Cadenaro; Ferrari M; Di Lenarda R; Lorenzo Breschi

PURPOSE To examine the bond strength and interfacial nanoleakage expression of fiber posts luted to intraradicular dentin with self-adhesive cements. Six-month and 1-year aging effects were examined. MATERIALS AND METHODS Post space was created in endodontically treated human incisors. Each tooth was assigned to a self-adhesive cement/post combination: (1) Bifix SE Cement (Voco) with proprietary posts (Rebilda Post, Voco), (2) RelyX Unicem (3M ESPE) with proprietary posts (Rely X Fiber Post, 3M ESPE), (3) MaxCem (Kerr) with Rebilda Posts. Each specimen was cut into 1-mm-thick sections and either immediately stressed to failure with the push-out bond strength test or aged in artificial saliva for 6 months or 1 year before testing. Additional specimens were processed for quantitative interfacial nanoleakage analysis using ammoniacal silver nitrate. RESULTS Immediate bond strength ranked in the following order: Bifix SE (7.8 ± 2.9 MPa) = RelyX Unicem (8.4 ± 2.7 MPa) > MaxCem (4.6 ± 2.4 MPa) (p < 0.05). Aging significantly reduced the bond strength of all cements after 1 year: Bifix SE (3.8 ± 1.4 MPa) = RelyX Unicem (5.8 ± 1.7 MPa) > MaxCem (1.3 ± 0.9 MPa; p<0.05). No immediate difference in interfacial nanoleakage expression was found. Nanoleakage increased after aging, and MaxCem showed the highest values. CONCLUSION The push-out strength and interfacial nanoleakage expression of fiber posts luted with self-adhesive cements were dependent on luting material and type of post, and were significantly affected by storage time.


European Journal of Oral Sciences | 2010

The effect of ageing on the elastic modulus and degree of conversion of two multistep adhesive systems

Giulio Marchesi; Chiara Navarra; Milena Cadenaro; Marcela Carrilho; Barbara Codan; Valter Sergo; Roberto Di Lenarda; Lorenzo Breschi

During the curing reaction, the monomers of dentine bonding systems should cross-link sufficiently to strengthen an adhesive so that it is clinically reliable. This study evaluated how different storage conditions (air vs. water storage) affect the elastic modulus (E-modulus) and degree of conversion (DC) of a three-step etch-and-rinse adhesive and a two-step self-etch adhesive. The biaxial flexural test and Raman microscopy were performed on resin disks made from the bonding agents Adper Scotchbond Multi-Purpose (SBMP; 3M ESPE) and Clearfil Protect Bond (CPB; Kuraray). The measurements were repeated after storage in either air or water for 15 and 30 min and for 1, 24, and 72 h. At time 0, the E-modulus was not affected by the adhesive system, whilst the degree of cure of CPB was higher than that of SBMP. Air storage increased the E-modulus at each ageing interval. Storage in water increased the E-modulus until it reached a maximum at 24 h, after which it decreased significantly at 72 h. No linear correlation between the percentage DC and E-modulus of the two adhesives was found when stored in water. The results of this study indicate that the mechanical properties and polymerization kinetics of SBMP and CPB are affected by storage time and medium.

Collaboration


Dive into the Giulio Marchesi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge