Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppa La Spada is active.

Publication


Featured researches published by Giuseppa La Spada.


Toxicon | 2014

Nematocyst discharge in Pelagia noctiluca (Cnidaria, Scyphozoa) oral arms can be affected by lidocaine, ethanol, ammonia and acetic acid

Rossana Morabito; Angela Marino; Silvia Dossena; Giuseppa La Spada

Nematocyst discharge and concomitant delivery of toxins is triggered to perform both defence and predation strategies in Cnidarians, and may lead to serious local and systemic reactions in humans. Pelagia noctiluca (Cnidaria, Scyphozoa) is a jellyfish particularly abundant in the Strait of Messina (Italy). After accidental contact with this jellyfish, not discharged nematocysts or even fragments of tentacles or oral arms may tightly adhere to the human skin and, following discharge, severely increase pain and the other adverse consequences of the sting. The aim of the present study is to verify if the local anesthetic lidocaine and other compounds, like alcohols, acetic acid and ammonia, known to provide pain relief after jellyfish stings, may also affect in situ discharge of nematocysts. Discharge was induced by a combined physico-chemical stimulation of oral arms by chemosensitizers (such as N-acetylated sugars, aminoacids, proteins and nucleotides), in the presence or absence of 1% lidocaine, 70% ethanol, 5% acetic acid or 20% ammonia, followed by mechanical stimulation by a non-vibrating test probe. The above mentioned compounds failed to induce discharge per se, and dramatically impaired the chemosensitizer-induced discharge response. We therefore suggest that prompt local treatment of the stung epidermis with lidocaine, acetic acid, ethanol and ammonia may provide substantial pain relief and help in reducing possible harmful local and systemic adverse reaction following accidental contact with P. noctiluca specimens.


Marine Drugs | 2014

Pelagia noctiluca (Scyphozoa) Crude Venom Injection Elicits Oxidative Stress and Inflammatory Response in Rats

Giuseppe Bruschetta; Daniela Impellizzeri; Rossana Morabito; Angela Marino; Akbar Ahmad; Nunziacarla Spanò; Giuseppa La Spada; Salvatore Cuzzocrea; Emanuela Esposito

Cnidarian toxins represent a rich source of biologically active compounds. Since they may act via oxidative stress events, the aim of the present study was to verify whether crude venom, extracted from the jellyfish Pelagia noctiluca, elicits inflammation and oxidative stress processes, known to be mediated by Reactive Oxygen Species (ROS) production, in rats. In a first set of experiments, the animals were injected with crude venom (at three different doses 6, 30 and 60 µg/kg, suspended in saline solution, i.v.) to test the mortality and possible blood pressure changes. In a second set of experiments, to confirm that Pelagia noctiluca crude venom enhances ROS formation and may contribute to the pathophysiology of inflammation, crude venom-injected animals (30 µg/kg) were also treated with tempol, a powerful antioxidant (100 mg/kg i.p., 30 and 60 min after crude venom). Administration of tempol after crude venom challenge, caused a significant reduction of each parameter related to inflammation. The potential effect of Pelagia noctiluca crude venom in the systemic inflammation process has been here demonstrated, adding novel information about its biological activity.


Cellular Physiology and Biochemistry | 2014

Heavy Metals Affect Nematocysts Discharge Response and Biological Activity of Crude Venom in the Jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa)

Rossana Morabito; Silvia Dossena; Giuseppa La Spada; Angela Marino

Background: Pollution of marine ecosystems and, specifically, heavy metals contamination may compromise the physiology of marine animals with events occurring on a cellular and molecular level. The present study focuses on the effect of short-term exposure to heavy metals like Zinc, Cadmium, Cobalt and Lanthanum (2-10 mM) on the homeostasis of Pelagia noctiluca (Cnidaria, Scyphozoa), a jellyfish abundant in the Mediterranean sea. This species possesses stinging organoids, termed nematocysts, whose discharge and concomitant delivery of venom underlie the survival of all Cnidaria. Methods: Nematocysts discharge response, elicited by combined chemico-physical stimulation, was verified on excised oral arms exposed to heavy metals for 20 min. In addition, the hemolytic activity of toxins, contained in the crude venom extracted from nematocysts isolated from oral arms, was tested on human erythrocytes, in the presence of heavy metals or their mixture. Results: Treatment with heavy metals significantly inhibited both nematocysts discharge response and hemolytic activity of crude venom, in a dose-dependent manner, not involving oxidative events, that was irreversible in the case of Lanthanum. Conclusion: Our findings show that the homeostasis of Pelagia noctiluca, in terms of nematocysts discharge capability and effectiveness of venom toxins, is dramatically and rapidly compromised by heavy metals and confirm that this jellyfish is eligible as a model for ecotoxicological investigations.


Cellular Physiology and Biochemistry | 2015

Curcumin Protects -SH Groups and Sulphate Transport after Oxidative Damage in Human Erythrocytes

Rossana Morabito; Giuseppe Falliti; Antonella Geraci; Giuseppa La Spada; Angela Marino

Background/Aims: Erythrocytes, continuously exposed to oxygen pressure and toxic compounds, are sensitive to oxidative stress, namely acting on integral Band 3 protein, with consequences on cell membranes deformability and anion transport efficiency. The aim of the present investigation, conducted on human erythrocytes, is to verify whether curcumin (1 or 10µM), a natural compound with proved antioxidant properties, may counteract Band 3-mediated anion transport alterations due to oxidative stress. Methods: Oxidative conditions were induced by exposure to, alternatively, either 2 mM N-ethylmaleimide (NEM) or pH-modified solutions (6.5 and 8.5). Rate constant for SO4= uptake and -SH groups estimation were measured to verify the effect of oxidative stress on anion transport efficiency and erythrocyte membranes. Results: After the exposure of erythrocytes to, alternatively, NEM or pH-modified solutions, a significant decrease in both rate constant for SO4= uptake and -SH groups was observed, which was prevented by curcumin, with a dose-dependent effect. Conclusions: Our results show that: i) the decreased efficiency of anion transport may be due to changes in Band 3 protein structure caused by cysteine -SH groups oxidation, especially after exposure to NEM and pH 6.5; ii) 10 µM Curcumin is effective in protecting erythrocytes from oxidative stress events at level of cell membrane transport.


Cellular Physiology and Biochemistry | 2013

Sulphate and Chloride-Dependent Potassium Transport in Human Erythrocytes are Affected by Crude Venom from Nematocysts of the Jellyfish Pelagia noctiluca

Rossana Morabito; Angela Marino; P. Romano; Caterina Rigano; Giuseppa La Spada

Background: It has been reported that biologically active compounds extracted from Cnidaria venom may induce damage by oxidative stress. Erythrocytes are constantly exposed to oxidative stresses, which can contribute to sulphydril (SH-) group oxidation and cell membrane deformability accompanied with activation of K-Cl co-transport and inhibition of anion transport. In this regard, Band 3 protein is responsible for mediating the electroneutral exchange of chloride (Cl-) for bicarbonate (HCO3-), particularly in erythrocytes, where it is the most abundant membrane protein. The aim of this study was to elucidate the effect of crude venom extracted from Pelagia noctiluca nematocysts on Band 3 -mediated anion transport in human erythrocytes. Methods: Erythrocytes were tested for SO42- uptake, K+ efflux, glutathione (GSH) levels and concentration of SH- groups. Results: The rate constant of SO42- uptake decreased progressively to 58% of control with increasing venom doses, and showed a 28% decrease after 2 mM NEM treatment. These effects can be explained by oxidative stress, which was reflected by decreased GSH levels in venom-treated erythrocytes. Hence, the decreased efficiency of anion transport may be due to changes in Band 3 structure caused by SH-group oxidation and reduced GSH concentration. In addition, an increased Cl--dependent K+ efflux was observed in venom-treated erythrocytes. Conclusion: Our results suggest that crude venom from Pelagia noctiluca alters cell membrane transport in human erythrocytes.


Cellular Physiology and Biochemistry | 2013

Sea Water Acidification Affects Osmotic Swelling, Regulatory Volume Decrease and Discharge in Nematocytes of the Jellyfish Pelagia noctiluca

Rossana Morabito; Angela Marino; Peter K. Lauf; Norma C. Adragna; Giuseppa La Spada

Background: Increased acidification/PCO2 of sea water is a threat to the environment and affects the homeostasis of marine animals. In this study, the effect of sea water pH changes on the osmotic phase (OP), regulatory volume decrease (RVD) and discharge of the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa) nematocytes, collected from the Strait of Messina (Italy), was assessed. Methods: Isolated nematocytes, suspended in artificial sea water (ASW) with pH 7.65, 6.5 and 4.5, were exposed to hyposmotic ASW of the same pH values and their osmotic response and RVD measured optically in a special flow through chamber. Nematocyte discharge was analyzed in situ in ASW at all three pH values. Results: At normal pH (7.65), nematocytes subjected to hyposmotic shock first expanded osmotically and then regulated their cell volume within 15 min. Exposure to hyposmotic ASW pH 6.5 and 4.5 compromised the OP and reduced or totally abrogated the ensuing RVD, respectively. Acidic pH also significantly reduced the nematocyte discharge response. Conclusion: Data indicate that the homeostasis and function of Cnidarians may be altered by environmental changes such as sea water acidification, thereby validating their use as novel bioindicators for the quality of the marine environment.


Scientific Reports | 2017

Crude venom from nematocysts of Pelagia noctiluca (Cnidaria: Scyphozoa) elicits a sodium conductance in the plasma membrane of mammalian cells

Rossana Morabito; Roberta Costa; Valentina Rizzo; Alessia Remigante; Charity Nofziger; Giuseppa La Spada; Angela Marino; Markus Paulmichl; Silvia Dossena

Cnidarians may negatively impact human activities and public health but concomitantly their venom represents a rich source of bioactive substances. Pelagia noctiluca is the most venomous and abundant jellyfish of the Mediterranean Sea and possesses a venom with hemolytic and cytolytic activity for which the mechanism is largely unknown. Here we show that exposure of mammalian cells to crude venom from the nematocysts of P. noctiluca profoundly alters the ion conductance of the plasma membrane, therefore affecting homeostatic functions such as the regulation and maintenance of cellular volume. Venom-treated cells exhibited a large, inwardly rectifying current mainly due to permeation of Na+ and Cl−, sensitive to amiloride and completely abrogated following harsh thermal treatment of crude venom extract. Curiously, the plasma membrane conductance of Ca2+ and K+ was not affected. Current-inducing activity was also observed following delivery of venom to the cytosolic side of the plasma membrane, consistent with a pore-forming mechanism. Venom-induced NaCl influx followed by water and consequent cell swelling most likely underlie the hemolytic and cytolytic activity of P. noctiluca venom. The present study underscores unique properties of P. noctiluca venom and provides essential information for a possible use of its active compounds and treatment of envenomation.


PLOS ONE | 2016

H2O2-Induced Oxidative Stress Affects SO4= Transport in Human Erythrocytes

Rossana Morabito; Orazio Romano; Giuseppa La Spada; Angela Marino

The aim of the present investigation was to verify the effect of H2O2-induced oxidative stress on SO4= uptake through Band 3 protein, responsible for Cl-/HCO3- as well as for cell membrane deformability, due to its cross link with cytoskeletal proteins. The role of cytoplasmic proteins binding to Band 3 protein has been also considered by assaying H2O2 effects on hemoglobin-free resealed ghosts of erythrocytes. Oxidative conditions were induced by 30 min exposure of human erythrocytes to different H2O2 concentrations (10 to 300 μM), with or without GSH (glutathione, 2 mM) or curcumin (10 μM), compounds with proved antioxidant properties. Since SO4= influx through Band 3 protein is slower and better controllable than Cl- or HCO3- exchange, the rate constant for SO4= uptake was measured to prove anion transport efficiency, while MDA (malondialdehyde) levels and –SH groups were estimated to quantify the effect of oxidative stress. H2O2 induced a significant decrease in rate constant for SO4= uptake at both 100 and 300 μM H2O2. This reduction, observed in erythrocytes but not in resealed ghosts and associated to increase in neither MDA levels nor in –SH groups, was impaired by both curcumin and GSH, whereas only curcumin effectively restored H2O2-induced changes in erythrocytes shape. Our results show that: i) 30 min exposure to 300 μM H2O2 reduced SO4= uptake in human erythrocytes; ii) oxidative damage was revealed by the reduction in rate constant for SO4= uptake, but not by MDA or –SH groups levels; iii) the damage was produced via cytoplasmic components which cross link with Band 3 protein; iv) the natural antioxidant curcumin may be useful in protecting erythrocytes from oxidative injury; v) SO4= uptake through Band 3 protein may be reasonably suggested as a tool to monitor erythrocytes function under oxidative conditions possibly deriving from alcohol consumption, use of drugs, radiographic contrast media administration, hyperglicemia or neurodegenerative diseases.


Toxins | 2018

Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings

Alessia Remigante; Roberta Costa; Rossana Morabito; Giuseppa La Spada; Angela Marino; Silvia Dossena

Cnidaria include the most venomous animals of the world. Among Cnidaria, Scyphozoa (true jellyfish) are ubiquitous, abundant, and often come into accidental contact with humans and, therefore, represent a threat for public health and safety. The venom of Scyphozoa is a complex mixture of bioactive substances—including thermolabile enzymes such as phospholipases, metalloproteinases, and, possibly, pore-forming proteins—and is only partially characterized. Scyphozoan stings may lead to local and systemic reactions via toxic and immunological mechanisms; some of these reactions may represent a medical emergency. However, the adoption of safe and efficacious first aid measures for jellyfish stings is hampered by the diffusion of folk remedies, anecdotal reports, and lack of consensus in the scientific literature. Species-specific differences may hinder the identification of treatments that work for all stings. However, rinsing the sting site with vinegar (5% acetic acid) and the application of heat (hot pack/immersion in hot water) or lidocaine appear to be substantiated by evidence. Controlled clinical trials or reliable models of envenomation are warranted to confirm the efficacy and safety of these approaches and identify possible species-specific exceptions. Knowledge of the precise composition of Scyphozoa venom may open the way to molecule-oriented therapies in the future.


Bollettino della Società italiana di biologia sperimentale | 2016

Cadmium affects osmotic phase and regulatory volume decrease in cultured human embryonic kidney cells

Rossana Morabito; Alessia Remigante; Roberta Costa; Silvia Dossena; Giuseppa La Spada; Angela Marino

The present investigation aims to verify whether cadmium (Cd 2+ ), a metal possibly accumulated in body tissues from air and food, affects cell volume regulation capability in cultured human embryonic kidney (HEK 293 Phoenix) cells. The osmotic phase (OP), which is the expected cell swelling due to aquaporins involvement after hyposmotic challenge, and regulatory volume decrease (RVD), bringing cell volume back to control values through Ca 2+ -dependent ion efflux (K+ and Cl–), have been monitored in HEK 293 cells treated with Cd 2+ (1-10-100 μM) for different time intervals (30 min, 3 h, overnight) and then submitted to 15 % hyposmotic shock. The results show that both 1 and 10 μM Cd 2+ significantly reduced OP, whereas 100 μM impaired Cd 2+ RVD mechanisms. The use of glutathione (GSH, 200 μM) confirmed that Cd 2+ elicited its effect via oxidative damage, being RVD inhibition after Cd 2+ treatment prevented by this antioxidant compound. Our findings show that: i) HEK 293 cells are a suitable model to assay the effect of xenobiotics on cell homeostasis; ii) Cd 2+ , depending on its concentration, affects cell homeostasis at different levels, i.e. water and ion permeability, responsible for, respectively, OP and RVD mechanism, adding thus more information to the knowledge of Cd 2+ toxicology.

Collaboration


Dive into the Giuseppa La Spada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberta Costa

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge