Giuseppe A. Cirino
Federal University of São Carlos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giuseppe A. Cirino.
IEEE Transactions on Plasma Science | 2000
R.M. de Castro; Patrick Verdonck; Marcelo B. Pisani; Ronaldo Domingues Mansano; Giuseppe A. Cirino; H. S. Maciel; M. Massi
The adequate determination of the end point of a plasma-etching process is very important for integrated circuit fabrication. In this paper, the authors propose a new method, making use of the floating potential, as determined by a single Langmuir probe with a radio frequency (RF) choke. For the etching of a polymer film with an oxygen plasma using a reactive ion-etching system, this method yields a reproducible and reliable signal, which was successfully used to detect the end point for several wafers, it is better than the method using the DC self-bias voltage as the end-point detection signal, and approximately as good as when using emission spectrometry-at least when the resist area is larger than 4.4 cm/sup 2/-whereas it uses a much cheaper equipment set. Langmuir probe measurements indicate that the floating potential changes are caused by several mechanisms: the average mass change, the plasma density, the average electron temperature, and the electron energy distribution all change after the end point of the etching.
Optical Engineering | 2013
Sergio Lopera Aristizabal; Giuseppe A. Cirino; Arlindo N. Montagnoli; Aparecido Arruda Sobrinho; José Benaque Rubert; Ronaldo Domingues Mansano
Abstract. This work presents the fabrication of a contiguous f/#=f/15 Fresnel microlens array (MLA) by employing a low-cost home-built maskless exposure lithographic system based on a digital light projector technology by using Texas Instruments’ digital micromirror device chip. A continuous diffractive phase relief structure was generated on a photoresist-coated silicon wafer, replicated in polydimethylsiloxane (PDMS) and electrostatically bonded to a glass substrate. The whole exposure time takes 10.8 min to expose a 2.4×2.4 mm MLA, with a resolution of 2.5 μm. This exposure time is relatively short, enabling high throughput or fast prototyping. Optical characterization was carried out using a He-Ne laser source (λ=633 nm), by evaluating the maximum intensity of each spot generated at the MLA focal plane, Imax, as well as its sharpness by measuring their full width at half maximum (FWHM) intensity values. The resulting FWHM and maximum intensity spot average values were FWHMAVG=20±8% μm and ImaxAVG=0.71±7% a.u., respectively. The quality of replication was evaluated by profile characterization of the resulting mold and replica based on step height measurement along 180 μm. The maximum obtained difference was 32 nm, corresponding to 2.5% of the total mold height or λ/20. AFM measurements were also carried out to quantify the roughness quality between mold and replica. The resulting RMS roughness was 4.73 nm (λ/130) and 6.66 nm (λ/95) for mold and replica, respectively. A comparison between theoretical and measured intensity profiles at the MLA focal plane was also carried out. A good correspondence between the results was found. Such an MLA can be applied as a Shack–Hartmann wavefront sensor in optical interconnects and to enhance the efficiency of detector arrays.
photonics north | 2006
Giuseppe A. Cirino; Robson Barcellos; Spero P. Morato; Allan Bereczki; Luiz G. Neto
A cubic-phase distribution is applied in the design, fabrication and characterization of inexpensive Fresnel lens arrays for passive infrared motion sensors. The resulting lens array produces a point spread function (PSF) capable of distinguish the presence of humans from pets by the employment of the so-called wavefront coding method. The cubic phase distribution used in the design can also reduce the optical aberrations present in the system. This aberration control allows a high tolerance in the fabrication of the lenses and in the alignment errors of the sensor. In order to proof the principle, a lens was manufactured on amorphous hydrogenated carbon thin film, by well-known micro fabrication process steps. The optical results demonstrates that the optical power falling onto the detector surface is attenuated for targets that present a mass that is horizontally distributed in space (e.g. pets) while the optical power is enhanced for targets that present a mass vertically distributed in space (e.g. humans). Then a mould on steel was fabricated by laser engraving, allowing large-scale production of the lens array in polymeric material. A polymeric lens was injected and its optical transmittance was characterized by Fourier Transform Infrared Spectrometry technique, which has shown an adequate optical transmittance in the 8-14 μm wavelength range. Finally the performance of the sensor was measured in a climate-controlled test laboratory constructed for this purpose. The results show that the sensor operates normally with a human target, with a 12 meter detection zone and within an angle of 100 degrees. On the other hand, when a small pet runs through a total of 22 different trajectories no sensor trips are observed. The novelty of this work is the fact that the so-called pet immunity function was implemented in a purely optical filtering. As a result, this approach allows the reduction of some hardware parts as well as decreasing the software complexity, once the information about the intruder is optically processed before it is transduced by the pyroelectric sensor.
Applied Optics | 2001
Luiz G. Neto; Luciana Brassolatti Roberto; Patrick Verdonck; Ronaldo Domingues Mansano; Giuseppe A. Cirino; Mario Antonio Stefani
A new hybrid optical device that is capable of splitting a monochromatic laser beam into an arbitrary number of lines over a wide angle is presented. It consists of a binary surface-relief computer-generated phase hologram and a continuous parabolic surface-relief grating. In this device the phase hologram serves to generate three small, parallel lines while the continuous parabolic surface-relief phase grating acts as an array of diverging parabolic lenses to widen these lines. The binary surface-relief was generated into one side of a quartz substrate through a plasma-etching process, and the parabolic profile was generated into a thick photoresist deposited on the other side of the quartz substrate. Calculations showed that a diverging parabolic lens with a f-number of 0.5 would deliver the desired optical pattern of multiple beams distributed over 90 degrees . A surface-relief depth of 6.0 mum was calculated with consideration of the phase distributions of such lens. The parabolic profiles were fabricated in a 10-mum-thick photoresist, by use of a contact exposure through a mask with a space pattern of repetitive 4- and 6-mum lines. He-Ne laser light was passed through a device that generated three parallel lines over a 90 degrees angle. The resulting diffraction patterns were characterized, and a satisfying result was obtained. The resulting multiple-line pattern can be used in robot vision and other applications.
Optics Express | 2010
Giuseppe A. Cirino; Ronaldo Domingues Mansano; Patrick Verdonck; Lucila Cescato; Luiz G. Neto
A phase shift proximity printing lithographic mask is designed, manufactured and tested. Its design is based on a Fresnel computer-generated hologram, employing the scalar diffraction theory. The obtained amplitude and phase distributions were mapped into discrete levels. In addition, a coding scheme using sub-cells structure was employed in order to increase the number of discrete levels, thus increasing the degree of freedom in the resulting mask. The mask is fabricated on a fused silica substrate and an amorphous hydrogenated carbon (a:C-H) thin film which act as amplitude modulation agent. The lithographic image is projected onto a resist coated silicon wafer, placed at a distance of 50 microm behind the mask. The results show a improvement of the achieved resolution--linewidth as good as 1.5 microm--what is impossible to obtain with traditional binary masks in proximity printing mode. Such achieved dimensions can be used in the fabrication of MEMS and MOEMS devices. These results are obtained with a UV laser but also with a small arc lamp light source exploring the partial coherence of this source.
Optical Engineering | 2004
Luiz G. Neto; Patricia S.P. Cardona; Giuseppe A. Cirino; Ronaldo Domingues Mansano; Patrick Verdonck
The use of diffractive optical elements (DOEs) is increasing for several industrial applications, such as beam shaping and optical filtering. Most elements modulate the phase of the incoming light or its amplitude, but not both. To overcome this limitation, we developed a full complex-amplitude modulation DOE. We employed well-established integrated circuit fabrication steps to fabricate the devices at relatively low cost and with high precision. Using this approach, the new elements optical performances are improved even for near-field operations. With this device it is possible to obtain the total control of the zeroth order transmitted light, resulting in low-noise reconstructed images.
Journal of Micromechanics and Microengineering | 2013
R G Jasinevicius; J G Duduch; Giuseppe A. Cirino; P. S. Pizani
A small Fresnel lens array was diamond turned in a single crystal (0 0 1) InSb wafer using a half-radius negative rake angle (−25°) single-point diamond tool. The machined array consisted of three concave Fresnel lenses cut under different machining sequences. The Fresnel lens profiles were designed to operate in the paraxial domain having a quadratic phase distribution. The sample was examined by scanning electron microscopy and an optical profilometer. Optical profilometry was also used to measure the surface roughness of the machined surface. Ductile ribbon-like chips were observed on the cutting tool rake face. No signs of cutting edge wear was observed on the diamond tool. The machined surface presented an amorphous phase probed by micro Raman spectroscopy. A successful heat treatment of annealing was carried out to recover the crystalline phase on the machined surface. The results indicated that it is possible to perform a ‘mechanical lithography’ process in single crystal semiconductors.
Applied Optics | 2007
José Carlos Pizolato; Giuseppe A. Cirino; Cristhiane Gonçalves; Luiz G. Neto
What we believe to be a new phase-contrast technique is proposed to recover intensity distributions from phase distributions modulated by spatial light modulators (SLMs) and binary diffractive optical elements (DOEs). The phase distribution is directly transformed into intensity distributions using a 4f optical correlator and an iris centered in the frequency plane as a spatial filter. No phase-changing plates or phase dielectric dots are used as a filter. This method allows the use of twisted nematic liquid-crystal televisions (LCTVs) operating in the real-time phase-mostly regime mode between 0 and p to generate high-intensity multiple beams for optical trap applications. It is also possible to use these LCTVs as input SLMs for optical correlators to obtain high-intensity Fourier transform distributions of input amplitude objects.
Molecular Crystals and Liquid Crystals | 2002
Giuseppe A. Cirino; Ana Paula Mousinho; Ronaldo Domingues Mansano; Patrick Verdonck; Luiz G. Neto; Antonio Carlos Seabra
In this work, the fabrication of arrays of parabolic convergent and divergent microlenses is presented. The used material is the Novolak-based polymer All-Resist AR P322, which can be used both for optical UV lithography and for electron beam direct write lithography. Gratings of parabolic divergent microlenses with f-number of 0.5 were fabricated using traditional optical lithography, employing the diffraction characteristics of de-focussed light during the photolithography exposure. Direct write electron beam lithography was used to obtain convergent parabolic microlenses, with different diameters and different heights, allowing the control of the focal length of these lenses. The same technique was employed to manufacture gratings of parabolic convergent microlenses with different diameter and focal length, what enables one to control the intensity of the different orders of the diffracted light. These structures have several applications in the fields of pattern recognition, robotic vision and optical sensors.
Thermosense XXV | 2003
Giuseppe A. Cirino; Luiz G. Neto
A cubic-phase distribution is applied in the design of inexpensive lenses for passive infrared motion sensors. The resulting lenses have the ability to distinguish the presence of humans from pets by the employment of the so-called wavefront coding method. The cubic-phase distribution used in the design can also reduce the optical aberrations present on the system. This aberration control allows a low tolerance in the fabrication of the lenses and in the alignment errors of the sensor.