Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Andolfo is active.

Publication


Featured researches published by Giuseppe Andolfo.


BMC Plant Biology | 2014

Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq

Giuseppe Andolfo; Florian Jupe; Kamil Witek; Graham J. Etherington; Maria Raffaella Ercolano; Jonathan D. G. Jones

BackgroundThe availability of draft crop plant genomes allows the prediction of the full complement of genes that encode NB-LRR resistance gene homologs, enabling a more targeted breeding for disease resistance. Recently, we developed the RenSeq method to reannotate the full NB-LRR gene complement in potato and to identify novel sequences that were not picked up by the automated gene prediction software. Here, we established RenSeq on the reference genome of tomato (Solanum lycopersicum) Heinz 1706, using 260 previously identified NB-LRR genes in an updated Solanaceae RenSeq bait library.ResultUsing 250-bp MiSeq reads after RenSeq on genomic DNA of Heinz 1706, we identified 105 novel NB-LRR sequences. Reannotation included the splitting of gene models, combination of partial genes to a longer sequence and closing of assembly gaps. Within the draft S. pimpinellifolium LA1589 genome, RenSeq enabled the annotation of 355 NB-LRR genes. The majority of these are however fragmented, with 5′- and 3′-end located on the edges of separate contigs. Phylogenetic analyses show a high conservation of all NB-LRR classes between Heinz 1706, LA1589 and the potato clone DM, suggesting that all sub-families were already present in the last common ancestor. A phylogenetic comparison to the Arabidopsis thaliana NB-LRR complement verifies the high conservation of the more ancient CCRPW8-type NB-LRRs. Use of RenSeq on cDNA from uninfected and late blight-infected tomato leaves allows the avoidance of sequence analysis of non-expressed paralogues.ConclusionRenSeq is a promising method to facilitate analysis of plant resistance gene complements. The reannotated tomato NB-LRR complements, phylogenetic relationships and chromosomal locations provided in this paper will provide breeders and scientists with a useful tool to identify novel disease resistance traits. cDNA RenSeq enables for the first time next-gen sequencing approaches targeted to this very low-expressed gene family without the need for normalization.


Nucleic Acids Research | 2012

PRGdb 2.0: towards a community-based database model for the analysis of R-genes in plants

Walter Sanseverino; Antonio Hermoso; Raffaella D’Alessandro; Anna Vlasova; Giuseppe Andolfo; Luigi Frusciante; Ernesto Lowy; Guglielmo Roma; Maria Raffaella Ercolano

The Plant Resistance Genes database (PRGdb; http://prgdb.org) is a comprehensive resource on resistance genes (R-genes), a major class of genes in plant genomes that convey disease resistance against pathogens. Initiated in 2009, the database has grown more than 6-fold to recently include annotation derived from recent plant genome sequencing projects. Release 2.0 currently hosts useful biological information on a set of 112 known and 104 310 putative R-genes present in 233 plant species and conferring resistance to 122 different pathogens. Moreover, the website has been completely redesigned with the implementation of Semantic MediaWiki technologies, which makes our repository freely accessed and easily edited by any scientists. To this purpose, we encourage plant biologist experts to join our annotation effort and share their knowledge on resistance-gene biology with the rest of the scientific community.


New Phytologist | 2013

Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics

Giuseppe Andolfo; Walter Sanseverino; Stephane Rombauts; Y. Van de Peer; James M. Bradeen; Domenico Carputo; Luigi Frusciante; Maria Raffaella Ercolano

To investigate the genome-wide spatial arrangement of R loci, a complete catalogue of tomato (Solanum lycopersicum) and potato (Solanum tuberosum) nucleotide-binding site (NBS) NBS, receptor-like protein (RLP) and receptor-like kinase (RLK) gene repertories was generated. Candidate pathogen recognition genes were characterized with respect to structural diversity, phylogenetic relationships and chromosomal distribution. NBS genes frequently occur in clusters of related gene copies that also include RLP or RLK genes. This scenario is compatible with the existence of selective pressures optimizing coordinated transcription. A number of duplication events associated with lineage-specific evolution were discovered. These findings suggest that different evolutionary mechanisms shaped pathogen recognition gene cluster architecture to expand and to modulate the defence repertoire. Analysis of pathogen recognition gene clusters associated with documented resistance function allowed the identification of adaptive divergence events and the reconstruction of the evolution history of these loci. Differences in candidate pathogen recognition gene number and organization were found between tomato and potato. Most candidate pathogen recognition gene orthologues were distributed at less than perfectly matching positions, suggesting an ongoing lineage-specific rearrangement. Indeed, a local expansion of Toll/Interleukin-1 receptor (TIR)-NBS-leucine-rich repeat (LRR) (TNL) genes in the potato genome was evident. Taken together, these findings have implications for improved understanding of the mechanisms of molecular adaptive selection at Solanum R loci.


Frontiers in Plant Science | 2015

Plant Innate Immunity Multicomponent Model.

Giuseppe Andolfo; Maria Raffaella Ercolano

Our understanding of plant–pathogen interactions is making rapid advances in order to address issues of global importance such as improving agricultural productivity and sustainable food security. Innate immunity has evolved in plants, resulting in a wide diversity of defense mechanisms adapted to specific threats. The postulated PTI/ETI model describes two perception layers of plant innate immune system, which belong to a first immunity component of defense response activation. To better describe the sophisticated defense system of plants, we propose a new model of plant immunity. This model considers the plant’s ability to distinguish the feeding behavior of their many foes, such as a second component that modulates innate immunity. This hypothesis provides a new viewpoint highlighting the relevance of hormone crosstalk and primary metabolism in regulating plant defense against the different behaviors of pathogens with the intention to stimulate further interest in this research area.


BMC Genomics | 2015

Structure, evolution and functional inference on the Mildew Locus O (MLO) gene family in three cultivated Cucurbitaceae spp.

Paolo Iovieno; Giuseppe Andolfo; Adalgisa Schiavulli; Domenico Catalano; Luigi Ricciardi; Luigi Frusciante; Maria Raffaella Ercolano; Stefano Pavan

BackgroundThe powdery mildew disease affects thousands of plant species and arguably represents the major fungal threat for many Cucurbitaceae crops, including melon (Cucumis melo L.), watermelon (Citrullus lanatus L.) and zucchini (Cucurbita pepo L.). Several studies revealed that specific members of the Mildew Locus O (MLO) gene family act as powdery mildew susceptibility factors. Indeed, their inactivation, as the result of gene knock-out or knock-down, is associated with a peculiar form of resistance, referred to as mlo resistance.ResultsWe exploited recently available genomic information to provide a comprehensive overview of the MLO gene family in Cucurbitaceae. We report the identification of 16 MLO homologs in C. melo, 14 in C. lanatus and 18 in C. pepo genomes. Bioinformatic treatment of data allowed phylogenetic inference and the prediction of several ortholog pairs and groups. Comparison with functionally characterized MLO genes and, in C. lanatus, gene expression analysis, resulted in the detection of candidate powdery mildew susceptibility factors. We identified a series of conserved amino acid residues and motifs that are likely to play a major role for the function of MLO proteins. Finally, we performed a codon-based evolutionary analysis indicating a general high level of purifying selection in the three Cucurbitaceae MLO gene families, and the occurrence of regions under diversifying selection in candidate susceptibility factors.ConclusionsResults of this study may help to address further biological questions concerning the evolution and function of MLO genes. Moreover, data reported here could be conveniently used by breeding research, aiming to select powdery mildew resistant cultivars in Cucurbitaceae.


Frontiers in Plant Science | 2016

Genome-Editing Technologies for Enhancing Plant Disease Resistance

Giuseppe Andolfo; Paolo Iovieno; Luigi Frusciante; Maria Raffaella Ercolano

One of the greatest challenges for agricultural science in the 21st century is to improve yield stability through the progressive development of superior cultivars. The increasing numbers of infectious plant diseases that are caused by plant-pathogens make it ever more necessary to develop new strategies for plant disease resistance breeding. Targeted genome engineering allows the introduction of precise modifications directly into a commercial variety, offering a viable alternative to traditional breeding methods. Genome editing is a powerful tool for modifying crucial players in the plant immunity system. In this work, we propose and discuss genome-editing strategies and targets for improving resistance to phytopathogens. First of all, we present the opportunities to rewrite the effector-target sequence for avoiding effector-target molecular interaction and also to modify effector-target promoters for increasing the expression of target genes involved in the resistance process. In addition, we describe potential approaches for obtaining synthetic R-genes through genome-editing technologies (GETs). Finally, we illustrate a genome editing flowchart to modify the pathogen recognition sites and engineer an R-gene that mounts resistance to some phylogenetically divergent pathogens. GETs potentially mark the beginning of a new era, in which synthetic biology affords a basis for obtaining a reinforced plant defense system. Nowadays it is conceivable that by modulating the function of the major plant immunity players, we will be able to improve crop performance for a sustainable agriculture.


BMC Plant Biology | 2015

Genetic variability and evolutionary diversification of membrane ABC transporters in plants.

Giuseppe Andolfo; Michelina Ruocco; Antimo Di Donato; Luigi Frusciante; Matteo Lorito; Felice Scala; Maria Raffaella Ercolano

BackgroundATP-binding cassette proteins have been recognized as playing a crucial role in the regulation of growth and resistance processes in all kingdoms of life. They have been deeply studied in vertebrates because of their role in drug resistance, but much less is known about ABC superfamily functions in plants.ResultsRecently released plant genome sequences allowed us to identify 803 ABC transporters in four vascular plants (Oryza. sativa, Solanum lycopersicum, Solanum tuberosum and Vitis vinifera) and 76 transporters in the green alga Volvox carteri, by comparing them with those reannotated in Arabidopsis thaliana and the yeast Saccharomyces cerevisiae. Retrieved proteins have been phylogenetically analysed to infer orthologous relationships. Most orthologous relationships in the A, D, E and F subfamilies were found, and interesting expansions within the ABCG subfamily were observed and discussed. A high level of purifying selection is acting in the five ABC subfamilies A, B, C, D and E. However, evolutionary rates of recent duplicate genes could influence vascular plant genome diversification. The transcription profiles of ABC genes within tomato organs revealed a broad functional role for some transporters and a more specific activity for others, suggesting the presence of key ABC regulators in tomato.ConclusionsThe findings achieved in this work could contribute to address several biological questions concerning the evolution of the relationship between genomes of different species. Plant ABC protein inventories obtained could be a valuable tool both for basic and applied studies. Indeed, interpolation of the putative role of gene functions can accelerate the discovering of new ABC superfamily members.


Molecular Breeding | 2014

Genome-wide identification and analysis of candidate genes for disease resistance in tomato

Giuseppe Andolfo; Walter Sanseverino; Riccardo Aversano; Luigi Frusciante; Maria Raffaella Ercolano

Tomato (Solanum lycopersicum L.) has served as an important model system for studying the genetics and molecular basis of resistance mechanisms in plants. An unprecedented challenge is now to capitalize on the genetic and genomic achievements obtained in this species. In this study, we show that information on the tomato genome can be used predictively to link resistance function with specific sequences. An integrated genomic approach for identifying new resistance (R) gene candidates was developed. An R gene functional map was created by co-localization of candidate pathogen recognition genes and anchoring molecular markers associated with resistance phenotypes. In-depth characterization of the identified pathogen recognition genes was performed. Finally, in order to highlight expressed pathogen recognition genes and to provide a first step in validation, the tomato transcriptome was explored and basic molecular analyses were conducted. Such methodology can help to better direct positional cloning, reducing the amount of effort required to identify a functional gene. The resulting candidate loci selected are available for exploiting their specific function.


PLOS ONE | 2014

Tomato Genome-Wide Transcriptional Responses to Fusarium Wilt and Tomato Mosaic Virus

Giuseppe Andolfo; Francesca Ferriello; Luca Tardella; Alberto Ferrarini; Loredana Sigillo; Luigi Frusciante; Maria Raffaella Ercolano

Since gene expression approaches constitute a starting point for investigating plant–pathogen systems, we performed a transcriptional analysis to identify a set of genes of interest in tomato plants infected with F. oxysporum f. sp. lycopersici (Fol) and Tomato Mosaic Virus (ToMV). Differentially expressed tomato genes upon inoculation with Fol and ToMV were identified at two days post-inoculation. A large overlap was found in differentially expressed genes throughout the two incompatible interactions. However, Gene Ontology enrichment analysis evidenced specific categories in both interactions. Response to ToMV seems more multifaceted, since more than 70 specific categories were enriched versus the 30 detected in Fol interaction. In particular, the virus stimulated the production of an invertase enzyme that is able to redirect the flux of carbohydrates, whereas Fol induced a homeostatic response to prevent the fungus from killing cells. Genomic mapping of transcripts suggested that specific genomic regions are involved in resistance response to pathogen. Coordinated machinery could play an important role in prompting the response, since 60% of pathogen receptor genes (NB-ARC-LRR, RLP, RLK) were differentially regulated during both interactions. Assessment of genomic gene expression patterns could help in building up models of mediated resistance responses.


Nucleic Acids Research | 2018

PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes

Cristina M Osuna-Cruz; Andreu Paytuvi-Gallart; Antimo Di Donato; Vicky Sundesha; Giuseppe Andolfo; Riccardo Aiese Cigliano; Walter Sanseverino; Maria Raffaella Ercolano

Abstract The Plant Resistance Genes database (PRGdb; http://prgdb.org) has been redesigned with a new user interface, new sections, new tools and new data for genetic improvement, allowing easy access not only to the plant science research community but also to breeders who want to improve plant disease resistance. The home page offers an overview of easy-to-read search boxes that streamline data queries and directly show plant species for which data from candidate or cloned genes have been collected. Bulk data files and curated resistance gene annotations are made available for each plant species hosted. The new Gene Model view offers detailed information on each cloned resistance gene structure to highlight shared attributes with other genes. PRGdb 3.0 offers 153 reference resistance genes and 177 072 annotated candidate Pathogen Receptor Genes (PRGs). Compared to the previous release, the number of putative genes has been increased from 106 to 177 K from 76 sequenced Viridiplantae and algae genomes. The DRAGO 2 tool, which automatically annotates and predicts (PRGs) from DNA and amino acid with high accuracy and sensitivity, has been added. BLAST search has been implemented to offer users the opportunity to annotate and compare their own sequences. The improved section on plant diseases displays useful information linked to genes and genomes to connect complementary data and better address specific needs. Through, a revised and enlarged collection of data, the development of new tools and a renewed portal, PRGdb 3.0 engages the plant science community in developing a consensus plan to improve knowledge and strategies to fight diseases that afflict main crops and other plants.

Collaboration


Dive into the Giuseppe Andolfo's collaboration.

Top Co-Authors

Avatar

Maria Raffaella Ercolano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Luigi Frusciante

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Walter Sanseverino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Paolo Iovieno

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Antimo Di Donato

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Hermoso

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge