Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Antonio Elia is active.

Publication


Featured researches published by Giuseppe Antonio Elia.


Nano Letters | 2014

An Advanced Lithium-Air Battery Exploiting an Ionic Liquid-Based Electrolyte

Giuseppe Antonio Elia; Jusef Hassoun; Won-Jin Kwak; Yang-Kook Sun; Bruno Scrosati; Franziska Mueller; Dominic Bresser; Stefano Passerini; Philipp Oberhumer; Nikolaos Tsiouvaras; Jakub Reiter

A novel lithium-oxygen battery exploiting PYR14TFSI-LiTFSI as ionic liquid-based electrolyte medium is reported. The Li/PYR14TFSI-LiTFSI/O2 battery was fully characterized by electrochemical impedance spectroscopy, capacity-limited cycling, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The results of this extensive study demonstrate that this new Li/O2 cell is characterized by a stable electrode-electrolyte interface and a highly reversible charge-discharge cycling behavior. Most remarkably, the charge process (oxygen oxidation reaction) is characterized by a very low overvoltage, enhancing the energy efficiency to 82%, thus, addressing one of the most critical issues preventing the practical application of lithium-oxygen batteries.


Advanced Materials | 2016

An Overview and Future Perspectives of Aluminum Batteries.

Giuseppe Antonio Elia; Krystan Marquardt; Katrin Hoeppner; Sébastien Fantini; Rongying Lin; Etienne Knipping; Willi Peters; Jean-Francois Drillet; Stefano Passerini; Robert Hahn

A critical overview of the latest developments in the aluminum battery technologies is reported. The substitution of lithium with alternative metal anodes characterized by lower cost and higher abundance is nowadays one of the most widely explored paths to reduce the cost of electrochemical storage systems and enable long-term sustainability. Aluminum based secondary batteries could be a viable alternative to the present Li-ion technology because of their high volumetric capacity (8040 mAh cm(-3) for Al vs 2046 mAh cm(-3) for Li). Additionally, the low cost aluminum makes these batteries appealing for large-scale electrical energy storage. Here, we describe the evolution of the various aluminum systems, starting from those based on aqueous electrolytes to, in more details, those based on non-aqueous electrolytes. Particular attention has been dedicated to the latest development of electrolytic media characterized by low reactivity towards other cell components. The attention is then focused on electrode materials enabling the reversible aluminum intercalation-deintercalation process. Finally, we touch on the topic of high-capacity aluminum-sulfur batteries, attempting to forecast their chances to reach the status of practical energy storage systems.


Scientific Reports | 2015

A polymer lithium-oxygen battery

Giuseppe Antonio Elia; Jusef Hassoun

Herein we report the characteristics of a lithium-oxygen battery using a solid polymer membrane as the electrolyte separator. The polymer electrolyte, fully characterized in terms of electrochemical properties, shows suitable conductivity at room temperature allowing the reversible cycling of the Li-O2 battery with a specific capacity as high as 25,000 mAh gC−1 reflected in a surface capacity of 12.5 mAh cm−2. The electrochemical formation and dissolution of the lithium peroxide during Li-O2 polymer cell operation is investigated by electrochemical techniques combined with X-ray diffraction study, demonstrating the process reversibility. The excellent cell performances in terms of delivered capacity, in addition to its solid configuration allowing the safe use of lithium metal as high capacity anode, demonstrate the suitability of the polymer lithium-oxygen as high-energy storage system.


ACS Applied Materials & Interfaces | 2015

Interphase Evolution of a Lithium-Ion/Oxygen Battery

Giuseppe Antonio Elia; Dominic Bresser; Jakub Reiter; Philipp Oberhumer; Yang-Kook Sun; Bruno Scrosati; Stefano Passerini; Jusef Hassoun

A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode.


ACS Applied Materials & Interfaces | 2014

A New, High Energy Sn–C/Li[Li0.2Ni0.4/3Co0.4/3Mn1.6/3]O2 Lithium-Ion Battery

Giuseppe Antonio Elia; Jun Wang; Dominic Bresser; Jie Li; Bruno Scrosati; Stefano Passerini; Jusef Hassoun

In this paper we report a new, high performance lithium-ion battery comprising a nanostructured Sn-C anode and Li[Li0.2Ni0.4/3Co0.4/3Mn1.6/3]O2 (lithium-rich) cathode. This battery shows highly promising long-term cycling stability for up to 500 cycles, excellent rate capability, and a practical energy density, which is expected to be as high as 220 Wh kg(-1) at the packaged cell level. Considering the overall performance of this new chemistry basically related to the optimized structure, morphology, and composition of the utilized active materials as demonstrated by XRD, TEM, and SEM, respectively, the system studied herein is proposed as a suitable candidate for application in the lithium-ion battery field.


Energy and Environmental Science | 2016

Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes

Giuseppe Antonio Elia; Ulderico Ulissi; Sangsik Jeong; Stefano Passerini; Jusef Hassoun

Advanced ionic liquid-based electrolytes are herein characterized for application in high performance lithium-ion batteries. The electrolytes based on either N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), N-butyl-N-methylpyrrolidinium bis(fluoro-sulfonyl)imide (Pyr14FSI), N-methoxy-ethyl-N-methylpyrrolidinium bis(trifluoromethane-sulfonyl)imide (Pyr12O1TFSI) or N-N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEMETFSI) ionic liquids and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt are fully characterized in terms of ionic conductivity, viscosity, electrochemical properties and lithium-interphase stability. All IL-based electrolytes reveal suitable characteristics for application in batteries. Lithium half-cells, employing a LiFePO4 polyanionic cathode, show remarkable performance. In particular, relevant efficiency and rate-capability are observed for the Py14FSI–LiTFSI electrolyte, which is further characterized for application in a lithium-ion battery composed of the alloying Sn–C nanocomposite anode and LiFePO4 cathode. The IL-based full-cell delivers a maximum reversible capacity of about 160 mA h g−1 (versus cathode weight) at a working voltage of about 3 V, corresponding to an estimated practical energy of about 160 W h kg−1. The cell evidences outstanding electrochemical cycle life, i.e., extended over 2000 cycles without signs of decay, and satisfactory rate capability. This performance together with the high safety provided by the IL-electrolyte, olivine-structure cathode and Li-alloying anode, makes this cell chemistry well suited for application in new-generation electric and electronic devices.


RSC Advances | 2015

A lithium-ion oxygen battery using a polyethylene glyme electrolyte mixed with an ionic liquid

Giuseppe Antonio Elia; Rebecca Bernhard; Jusef Hassoun

In this paper, we propose a new electrolyte formed by dissolving lithium-bis-(trifluoromethanesulfonyl)-imide (LiTFSI) salt in a long chain glyme, i.e. poly(ethylene glycol)500-dimethylether (PEG500DME) mixed with methyl butyl pyrrolidinium-bis-(trifluoromethanesulfonyl)-imide (Pyr14TFSI) ionic liquid. The electrolyte composition ensures both very low volatility and good performance as demonstrated by thermal analysis and electrochemical tests. The selected solution is efficiently employed as the electrolyte both in a lithium–oxygen half-cell, and in a full lithium-ion oxygen battery using a Li–Sn–C nanostructured composite anode, thus suggesting the suitability of the polyethylene glyme mixed with the ionic liquid for application in high-energy storage systems.


Physical Chemistry Chemical Physics | 2013

Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell.

Oscar Vargas; Álvaro Caballero; J. Morales; Giuseppe Antonio Elia; Bruno Scrosati; Jusef Hassoun

We demonstrate the feasibility of a lithium ion battery (LIB) using graphene nanosheets (GNS) as the anode in combination with a LiNi(0.5)Mn(1.5)O4 (LNMO) high voltage, spinel-structure cathode. The GNS anode is characterized by a reversible capacity of the order of 600 mA h g(-1) and a working voltage of around 0.9 V, while the 4.8-V cathode has a theoretical capacity of 146.7 mA h g(-1). The full GNS/LiNi(0.5)Mn(1.5)O4 cell has an average working voltage of about 3.75 V and a capacity of the order of 100 mA h g(-1). The findings of this paper suggest that the graphene may be proposed as a suitable anode for application in lithium ion batteries.


Chemistry: A European Journal | 2016

A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution

Giuseppe Antonio Elia; Ulderico Ulissi; Franziska Mueller; Jakub Reiter; Nikolaos Tsiouvaras; Yang-Kook Sun; Bruno Scrosati; Stefano Passerini; Jusef Hassoun

In this paper, we report an advanced long-life lithium ion battery, employing a Pyr14 TFSI-LiTFSI non-flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn-C) nanocomposite anode, and a layered LiNi1/3 Co1/3 Mn1/3 O2 (NMC) cathode. The IL-based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel-Tammann-Fulcher (VTF) trend. Lithium half-cells employing the Sn-C anode and NMC cathode in the Pyr14 TFSI-LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn-C electrodes are combined into a cathode-limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g(-1) and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL-based lithium ion cells are suitable batteries for application in electric vehicles.


Journal of Materials Chemistry | 2017

Insights into the reversibility of aluminum graphite batteries

Giuseppe Antonio Elia; Ivana Hasa; Giorgia Greco; Thomas Diemant; Krystan Marquardt; Katrin Hoeppner; R. Jürgen Behm; Armin Hoell; Stefano Passerini; Robert Hahn

Herein we report a novel study on the reaction mechanism of non-aqueous aluminum/graphite cell chemistry employing 1-ethyl-3-methylimidazolium chloride:aluminum trichloride (EMIMCl:AlCl3) as the electrolyte. This work highlights new insights into the reversibility of the anion intercalation chemistry besides confirming its outstanding cycle life exceeding 2000 cycles, corresponding to more than 5 months of cycling test. The reaction mechanism, involving the intercalation of AlCl4− in graphite, has been fully characterized by means of ex situ X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure spectroscopy (XANES) and small-angle X-ray scattering (SAXS), evidencing the accumulation of anionic species into the cathode as the main factor responsible for the slight initial irreversibility of the electrochemical process.

Collaboration


Dive into the Giuseppe Antonio Elia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Scrosati

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Stefano Passerini

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Hahn

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Krystan Marquardt

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Katrin Hoeppner

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Ulderico Ulissi

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge