Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Boccuzzi is active.

Publication


Featured researches published by Giuseppe Boccuzzi.


Free Radical Biology and Medicine | 1999

Dehydroepiandrosterone protects tissues of streptozotocin-treated rats against oxidative stress

Manuela Aragno; Elena Tamagno; Valentina Gatto; Enrico Brignardello; Silvia Parola; Oliviero Danni; Giuseppe Boccuzzi

Chronic hyperglycemia in diabetes determines the overproduction of free radicals, and evidence is increasing that these contribute to the development of diabetic complications. It has recently been reported that dehydroepiandrosterone possesses antioxidant properties; this study evaluates whether, administered daily for three weeks per os, it may provide antioxidant protection in tissues of rats with streptozotocin-induced diabetes. Lipid peroxidation was evaluated on liver, brain and kidney homogenates from diabetic animals, measuring both steady-state concentrations of thiobarbituric acid reactive substances and fluorescent chromolipids. Hyperglycemic rats had higher thiobarbituric acid reactive substances formation and fluorescent chromolipids levels than controls. Dehydroepiandrosterone-treatment (4 mg/day for 3 weeks) protected tissues against lipid peroxidation: liver, kidney and brain homogenates from dehydroepiandrosterone-treated animals showed a significant decrease of both thiobarbituric acid reactive substances and fluorescent chromolipids formation. The effect of dehydroepiandrosterone on the cellular antioxidant defenses was also investigated, as impaired antioxidant enzyme activities were considered proof of oxygen-dependent toxicity. In kidney and liver homogenates, dehydroepiandrosterone treatment restored to near-control values the cytosolic level of reduced glutathione, as well as the enzymatic activities of superoxide-dismutase, glutathione-peroxidase, catalase. In the brain, only an increase of catalase activity was evident (p < .05), which reverted with dehydroepiandrosterone treatment. The results demonstrate that DHEA treatment clearly reduces oxidative stress products in the tissues of streptozotocin-treated rats.


Neurobiology of Aging | 2012

AGEs/RAGE complex upregulates BACE1 via NF-κB pathway activation.

Michela Guglielmotto; Manuela Aragno; Elena Tamagno; Ilenia Vercellinatto; Sonia Visentin; Claudio Medana; Maria Graziella Catalano; Mark A. Smith; George Perry; Oliviero Danni; Giuseppe Boccuzzi; Massimo Tabaton

Although the pathogenesis of sporadic Alzheimer disease (AD) is not clearly understood, it is likely dependent on several age-related factors. Diabetes is a risk factor for AD, and multiple mechanisms connecting the 2 diseases have been proposed. Hyperglycemia enhances the formation of advanced glycation end products (AGEs) that result from the auto-oxidation of glucose and fructose. The interaction of AGEs with their receptor, named RAGE, elicits the formation of reactive oxygen species that are also believed to be an early event in AD pathology. To investigate a functional link between the disorders diabetes and AD, the effect of 2 AGEs, pentosidine and glyceraldehydes-derived pyridinium (GLAP), was studied on BACE1 expression both in vivo, in streptozotocin treated rats, and in vitro in differentiated neuroblastoma cells. We showed that pentosidine and GLAP were able to upregulate BACE1 expression through their binding with RAGE and the consequent activation of NF-κB. In addition, both pentosidine and GLAP were found to be increased in the brain in sporadic AD patients. Our findings demonstrate that activation of the AGEs/RAGE axis, by upregulating the key enzyme for amyloid-β production, provides a pathologic link between diabetes mellitus and AD.


Free Radical Biology and Medicine | 1997

PROTECTIVE EFFECT OF DEHYDROEPIANDROSTERONE AGAINST COPPER-INDUCED LIPID PEROXIDATION IN THE RAT

Giuseppe Boccuzzi; Manuela Aragno; Milfred Seccia; Enrico Brignardello; Elena Tamagno; Emanuele Albano; Oliviero Danni; Giorgio Bellomo

This study investigates the effectiveness and multitargeted activity of dehydroepiandrosterone (DHEA) as antioxidant in vivo. A single dose of DHEA was given IP to male rats. Liver and brain microsomes, and plasma low density lipoprotein (LDL), were isolated from rats sacrificed 17 h later. Liver and brain microsomes were challenged with CuSO(4) and, as index of lipid peroxidation, the production of thiobarbituric acid reactive substances (TBARS) was measaured. Also, plasma low-density lipoprotein (LDL) were challenged with copper and the time course of lipid peroxidation was evaluated following the formation of conjugated dienes. The onset of TBARS generation induced by copper was marked delayed in both liver and brain microsomes from DHEA-treated animals. Also, the resistance of LDL to oxidation, expressed by the duration of the lag-phase of the kinetic curve, was significantly enhanced in DHEA-treated rats. Results indicate that in vivo DHEA supplementation makes subcellular fractions isolated from different tissues and plasma constituents (LDL) more resistant to lipid peroxidation triggered by copper. The antioxidant effect on plasma LDL might be of special relevance to the proposed antiatherogenic activity of DHEA. Moreover, multitargeted antioxidant activity of DHEA might protect tissues from oxygen radicals damage.


Endocrine-related Cancer | 2007

Valproic acid enhances tubulin acetylation and apoptotic activity of paclitaxel on anaplastic thyroid cancer cell lines

Maria Graziella Catalano; Roberta Poli; Mariateresa Pugliese; Nicoletta Fortunati; Giuseppe Boccuzzi

The introduction of paclitaxel into multimodal therapy for anaplastic thyroid carcinoma has failed to improve overall survival. Toxicity rules out the high doses required, especially in older patients. The search for strategies to enhance paclitaxel antineoplastic activity and reduce its side effects is thus advisable. The study aimed to determine whether the histone deacetylase (HDAC) inhibitor valproic acid (VPA) improves the anticancer action of paclitaxel and elucidate the mechanisms underlying the effects of combined treatment. We examined the effect of VPA on the sensitivity to paclitaxel of two anaplastic thyroid carcinoma cell lines (CAL-62 and ARO), and the ability of the drug to determine tubulin acetylation and enhance paclitaxel-induced acetylation. The addition of as little as 0.7 mM VPA to paclitaxel enhances both cytostatic and cytotoxic effects of paclitaxel alone. Increased apoptosis explains the enhancement of the cytotoxic effect. The mechanism underlying this effect is through inhibition of HDAC6 activity, which leads to tubulin hyperacetylation. The results suggest a mechanistic link between HDAC6 inhibition, tubulin acetylation, and the VPA-induced enhancement of paclitaxel effects, and provide the rationale for designing future combination therapies.


Biochemical Pharmacology | 2000

Oxidative derangement in rat synaptosomes induced by hyperglycaemia : Restorative effect of dehydroepiandrosterone treatment

Manuela Aragno; Silvia Parola; Elena Tamagno; Enrico Brignardello; Roberta Manti; Oliviero Danni; Giuseppe Boccuzzi

Central nervous system damage in diabetes is caused by both cerebral atherosclerosis and the detrimental effect of chronic hyperglycaemia on nervous tissue. Hyperglycaemia is the primer of a series of cascade reactions causing overproduction of free radicals. There is increasing evidence that these reactive molecules contribute to neuronal tissue damage. Dehydroepiandrosterone (DHEA) has been reported to possess antioxidant properties. This study evaluates the oxidative status in the synaptosomal fraction isolated from the brain of streptozotocin-treated rats and the antioxidant effect of DHEA treatment on diabetic rats. Hydroxyl radical generation, hydrogen peroxide content, and the level of the reactive oxygen species was increased (P<0.05) in synaptosomes isolated from streptozotocin-treated rats. The derangement of the oxidative status was confirmed by a low level of reduced glutathione and alpha-tocopherol. DHEA treatment (4 mg per day for 3 weeks, per os) protected the synaptosomes against oxidative damage: synaptosomes from diabetic DHEA-treated rats showed a significant decrease in reactive species (P<0.05) and in the formation of end products of lipid peroxidation, evaluated in terms of fluorescent chromolipid (P<0.01). Moreover, DHEA treatment restored the unsaturated fatty acid content of the membrane and the reduced glutathione and alpha-tocopherol levels to normal levels and restored membrane NaK-ATPase activity close to control levels. The results demonstrate that DHEA supplementation greatly reduces oxidative damage in synaptosomes isolated from diabetic rats and suggest that this neurosteroid may participate in protecting the integrity of synaptic membranes against hyperglycaemia-induced damage.


Free Radical Biology and Medicine | 2009

SREBP-1c in nonalcoholic fatty liver disease induced by Western-type high-fat diet plus fructose in rats.

Manuela Aragno; Chiara Tomasinelli; Ilenia Vercellinatto; Maria Graziella Catalano; Massimo Collino; Roberto Fantozzi; Oliviero Danni; Giuseppe Boccuzzi

This study concentrated on the initial events triggering the development of nonalcoholic fatty liver disease induced by a high-fat plus fructose (HF-F) diet and on the possibility of delaying nonalcoholic fatty liver disease progression by adding dehydroepiandrosterone (DHEA) to the diet. Sterol regulatory element binding protein-1c (SREBP-1c) activation plays a crucial role in the progression of nonalcoholic fatty liver disease induced by an HF-F diet. This study investigated the protective effects of DHEA, a compound of physiological origin with multitargeted antioxidant properties, against the induction of SREBP-1c and on liver insulin resistance in rats fed an HF-F diet, which mimics a typical unhealthy Western diet. An HF-F diet, fortified or not with DHEA (0.01%, w/w), was administered for 15 weeks to male Wistar rats. After HF-F the liver showed unbalanced oxidative status, fatty infiltration, hepatic insulin resistance, and inflammation. The addition of DHEA to the diet reduced both activation of oxidative-stress-dependent pathways and expression of SREBP-1c and partially restored the expression of liver X-activated receptor-alpha and insulin receptor substrate-2 genes. DHEA supplementation of the HF-F diet reduced de novo lipogenesis and delayed progression of nonalcoholic fatty liver disease, demonstrating a relationship between oxidative stress and nonalcoholic fatty liver disease via SREBP-1c.


British Journal of Pharmacology | 2010

Pioglitazone improves lipid and insulin levels in overweight rats on a high cholesterol and fructose diet by decreasing hepatic inflammation

Massimo Collino; Manuela Aragno; Sara Castiglia; Gianluca Miglio; Chiara Tomasinelli; Giuseppe Boccuzzi; Christoph Thiemermann; Roberto Fantozzi

Background and purpose:  Nutrient overload leads to obesity and insulin resistance. Pioglitazone, a selective peroxisome proliferator‐activated receptor (PPAR)γ agonist, is currently used to manage insulin resistance, but the specific molecular mechanisms activated by PPARγ are not yet fully understood. Recent studies suggest the involvement of suppressor of cytokine signalling (SOCS)‐3 in the pathogenesis of insulin resistance. This study aimed to investigate the hepatic signalling pathway activated by PPARγ activation in a non‐genetic insulin‐resistant animal model.


Diabetes | 2009

Insulin Reduces Cerebral Ischemia/Reperfusion Injury in the Hippocampus of Diabetic Rats: A Role for Glycogen Synthase Kinase-3β

Massimo Collino; Manuela Aragno; Sara Castiglia; Chiara Tomasinelli; Christoph Thiemermann; Giuseppe Boccuzzi; Roberto Fantozzi

OBJECTIVE—There is evidence that insulin reduces brain injury evoked by ischemia/reperfusion (I/R). However, the molecular mechanisms underlying the protective effects of insulin remain unknown. Insulin is a well-known inhibitor of glycogen synthase kinase-3β (GSK-3β). Here, we investigate the role of GSK-3β inhibition on I/R-induced cerebral injury in a rat model of insulinopenic diabetes. RESEARCH DESIGN AND METHODS—Rats with streptozotocin-induced diabetes were subjected to 30-min occlusion of common carotid arteries followed by 1 or 24 h of reperfusion. Insulin (2–12 IU/kg i.v.) or the selective GSK-3β inhibitor TDZD-8 (0.2–3 mg/kg i.v.) was administered during reperfusion. RESULTS—Insulin or TDZD-8 dramatically reduced infarct volume and levels of S100B protein, a marker of cerebral injury. Both drugs induced phosphorylation of the Ser9 residue, thereby inactivating GSK-3β in the rat hippocampus. Insulin, but not TDZD-8, lowered blood glucose. The hippocampi of the drug-treated animals displayed reduced oxidative stress at 1 h of reperfusion as shown by the decreased generation of reactive oxygen species and lipid peroxidation. I/R-induced activation of nuclear factor-κB was attenuated by both drug treatments. At 24 h of reperfusion, TDZD-8 and insulin significantly reduced plasma levels of tumor necrosis factor-α; neutrophil infiltration, measured as myeloperoxidase activity and intercellular-adhesion-molecule-1 expression; and cyclooxygenase-2 and inducible-NO-synthase expression. CONCLUSIONS—Acute administration of insulin or TDZD-8 reduced cerebral I/R injury in diabetic rats. We propose that the inhibitory effect on the activity of GSK-3β contributes to the protective effect of insulin independently of any effects on blood glucose.


The Journal of Clinical Endocrinology and Metabolism | 2008

Ultrasound Screening for Thyroid Carcinoma in Childhood Cancer Survivors: A Case Series

Enrico Brignardello; Andrea Corrias; Giuseppe Isolato; Nicola Palestini; Luca Cordero di Montezemolo; Franca Fagioli; Giuseppe Boccuzzi

CONTEXT Childhood cancer survivors need regular monitoring into young adulthood and beyond, because they are at risk for developing late-onset complications of cancer therapy, including second malignancies. OBJECTIVE This study focuses on the use of thyroid ultrasound to screen for thyroid carcinoma in a population of childhood cancer survivors. PATIENTS A total of 129 subjects who had received radiotherapy to the head, neck, or upper thorax for a pediatric cancer were studied in the setting of a long-term follow-up unit. DESIGN Thyroid ultrasound usually began 5 yr after radiotherapy and was repeated every third year, if negative. Median follow-up time since childhood cancer diagnosis was 15.8 yr (range 6.1-34.8 yr). Solid thyroid nodules were found in 35 patients. Fine-needle aspiration was performed in 19 patients, of which 14 had nodules above 1 cm. MAIN OUTCOME MEASURE The main outcome measure was the finding of not palpable thyroid cancers. RESULTS Cytological examination of specimens diagnosed papillary carcinoma in five patients who underwent surgery. The cytological diagnosis of papillary thyroid carcinoma was confirmed in all cases by histological examination. Notably, only two of these patients had palpable nodules; the other three were smaller than 1 cm and were detected only by ultrasound. However, histological examination showed nodal metastases in two of these. CONCLUSIONS Although ultrasound screening for thyroid cancer in the general population is not cost effective and could lead to unnecessary surgery, due to false positives, we believe that in childhood cancer survivors who received radiotherapy involving the head, neck, or upper thorax, it would be worthwhile.


Molecular and Cellular Endocrinology | 2010

Sex Hormone-Binding Globulin (SHBG), estradiol and breast cancer

Nicoletta Fortunati; Maria Graziella Catalano; Giuseppe Boccuzzi; Roberto Frairia

The human serum Sex Hormone-Binding Globulin (SHBG) plays an important role in breast cancer pathophysiology and risk definition, since it regulates the bioavailable fraction of circulating estradiol. We here summarize data reported over the years concerning the involvement of SHBG and SHBG polymorphisms in the definition of breast cancer risk. We also report what is known about the direct action of SHBG in breast cancer cells, illustrating its interaction with these cells and the subsequent initiation of a specific intracellular pathway leading to cross-talk with the estradiol-activated pathway and, finally, to the inhibition of several effects of estradiol in breast cancer cells. In conclusion, as a result of its unique property of regulating the estrogen free fraction and cross-talking with the estradiol pathways, by inhibiting estradiol-induced breast cancer cell growth and proliferation, SHBG is associated with a reduced risk of developing the neoplasm after estrogen exposure.

Collaboration


Dive into the Giuseppe Boccuzzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge