Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Campiani is active.

Publication


Featured researches published by Giuseppe Campiani.


Cancer Research | 2009

Paclitaxel Directly Binds to Bcl-2 and Functionally Mimics Activity of Nur77

Cristiano Ferlini; Lucia Cicchillitti; Giuseppina Raspaglio; Silvia Bartollino; Samanta Cimitan; Carlo Bertucci; Simona Mozzetti; Daniela Gallo; Marco Persico; Caterina Fattorusso; Giuseppe Campiani; Giovanni Scambia

We reported previously that Bcl-2 is paradoxically down-regulated in paclitaxel-resistant cancer cells. We reveal here that paclitaxel directly targets Bcl-2 in the loop domain, thereby facilitating the initiation of apoptosis. Molecular modeling revealed an extraordinary similarity between the paclitaxel binding sites in Bcl-2 and beta-tubulin, leading us to speculate that paclitaxel could be mimetic of an endogenous peptide ligand, which binds both proteins. We tested the hypothesis that paclitaxel mimics Nur77, which, like paclitaxel, changes the function of Bcl-2. This premise was confirmed by Nur77 interacting with both paclitaxel targets (Bcl-2 and beta-tubulin) and a peptide sequence mimicking the Nur77 structural region, thus reproducing the paclitaxel-like effects of tubulin polymerization and opening the permeability transition pore channel in mitochondria. This discovery could help in the development of novel anticancer agents with nontaxane skeleton as well as in identifying the clinical subsets responsive to paclitaxel-based therapy.


Current Pharmaceutical Design | 2002

Non-Nucleoside HIV-1 Reverse Transcriptase (RT) Inhibitors: Past, Present, and Future Perspectives

Giuseppe Campiani; Anna Ramunno; Giovanni Maga; Vito Nacci; Caterina Fattorusso; Bruno Catalanotti; Elena Morelli; Ettore Novellino

Along with nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive and important place in the treatment of HIV-1 infections, and are in rapid development. These compounds can be grouped into two classes: the first generation NNRTIs, mainly discovered by random screening, and the second generation NNRTIs, developed as a result of comprehensive strategies involving molecular modelling, rationale-based drug synthesis, biological and pharmacokinetic evaluations. The recent boom of NNRTIs is mainly due to their antiviral potency, high specificity and low toxicity. The rapid emergence of drug-resistant HIV-1 strains induced by the first generation drugs is a disadvantage bypassed, in part, by the broad spectrum second generation NNRTIs. Starting from the first generation, this review will focus on the second generation NNRTIs dealing with the recent and most interesting published results, highlighting the guidelines for the development of a third generation of NNRTIs.


Cancer Research | 2005

The seco-taxane IDN5390 is able to target class III beta-tubulin and to overcome paclitaxel resistance.

Cristiano Ferlini; Giuseppina Raspaglio; Simona Mozzetti; Lucia Cicchillitti; Flavia Filippetti; Daniela Gallo; Caterina Fattorusso; Giuseppe Campiani; Giovanni Scambia

A prominent mechanism of drug resistance to taxanes is the overexpression of class III β-tubulin. The seco-taxane IDN5390 was chosen for its selective activity in paclitaxel-resistant cells with an overexpression of class III β-tubulin. Moreover, the combined treatment paclitaxel/IDN5390 yielded a strong synergism, which was also evident in cell-free tubulin polymerization assays. In the presence of an anti-class III β-tubulin as a blocking antibody, tubulin polymerization induced by paclitaxel and IDN5390 was enhanced and not affected, respectively, whereas synergism was abolished, thereby indicating that IDN5390 activity is not modulated by class III β-tubulin levels. Such properties can be explained by taking into consideration the composition of class III β-tubulin paclitaxel binding site; in fact, Ser277 interacting with paclitaxel C group in class I is replaced by an Arginine in class III. IDN5390 that has an open and flexible C ring and an acidic α-unsaturated enol-keton moiety better fits with class III β-tubulin than paclitaxel at the binding site. Taking altogether, these findings indicate that the concomitant treatment IDN5390/paclitaxel is able to successfully target class I and III β-tubulin and the combined use of two taxanes with diverse spectrum activity against tubulin isotypes could represent a novel approach to overcome paclitaxel resistance.


FEBS Letters | 2002

Caspase-3 is not essential for DNA fragmentation in MCF-7 cells during apoptosis induced by the pyrrolo-1,5-benzoxazepine, PBOX-6

Margaret M. Mc Gee; Edel Hyland; Giuseppe Campiani; Anna Ramunno; Vito Nacci; Daniela M. Zisterer

Effector caspases‐3, ‐6 and ‐7 are responsible for producing the morphological features associated with apoptosis, such as DNA fragmentation. The present study demonstrates that a member of a novel series of pyrrolo‐1,5‐benzoxazepines, PBOX‐6, induces apoptosis in MCF‐7 cells, which lack caspase‐3. Apoptosis was accompanied by DNA fragmentation and the activation of caspase‐7, but not caspases‐3 and ‐6. Inhibition of caspase‐7 activity reduced the extent of apoptosis induced, indicating that activation of caspase‐7 is involved in the mechanism by which PBOX‐6 induces apoptosis in MCF‐7 cells. This study suggests that caspase‐3 is not necessarily essential for DNA fragmentation and the morphological changes associated with apoptosis.


Journal of Medicinal Chemistry | 2009

Discovery of a new class of potential multifunctional atypical antipsychotic agents targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors: design, synthesis, and effects on behavior.

Stefania Butini; Sandra Gemma; Giuseppe Campiani; Silvia Franceschini; Francesco Trotta; Marianna Borriello; Nicoletta Ceres; Sindu Ros; Salvatore Sanna Coccone; Matteo Bernetti; Meri De Angelis; Margherita Brindisi; Vito Nacci; Isabella Fiorini; Ettore Novellino; Alfredo Cagnotto; Tiziana Mennini; Karin Sandager-Nielsen; Jesper T. Andreasen; Jørgen Scheel-Krüger; Jens D. Mikkelsen; Caterina Fattorusso

Dopamine D(3) antagonism combined with serotonin 5-HT(1A) and 5-HT(2A) receptor occupancy may represent a novel paradigm for developing innovative antipsychotics. The unique pharmacological features of 5i are a high affinity for dopamine D(3), serotonin 5-HT(1A) and 5-HT(2A) receptors, together with a low affinity for dopamine D(2) receptors (to minimize extrapyramidal side effects), serotonin 5-HT(2C) receptors (to reduce the risk of obesity under chronic treatment), and for hERG channels (to reduce incidence of torsade des pointes). Pharmacological and biochemical data, including specific c-fos expression in mesocorticolimbic areas, confirmed an atypical antipsychotic profile of 5i in vivo, characterized by the absence of catalepsy at antipsychotic dose.


Journal of Medicinal Chemistry | 2008

Design, synthesis, and structure-activity relationship studies of 4-quinolinyl- and 9-acrydinylhydrazones as potent antimalarial agents.

Caterina Fattorusso; Giuseppe Campiani; Gagan Kukreja; Marco Persico; Stefania Butini; Maria Pia Romano; Maria Altarelli; Sindu Ros; Margherita Brindisi; Luisa Savini; Ettore Novellino; Vito Nacci; Ernesto Fattorusso; Silvia Parapini; Nicoletta Basilico; Donatella Taramelli; Vanessa Yardley; Simon L. Croft; Marianna Borriello; Sandra Gemma

Malaria is a major health problem in poverty-stricken regions where new antiparasitic drugs are urgently required at an affordable price. We report herein the design, synthesis, and biological investigation of novel antimalarial agents with low potential to develop resistance and structurally based on a highly conjugated scaffold. Starting from a new hit, the designed modifications were performed hypothesizing a specific interaction with free heme and generation of radical intermediates. This approach provided antimalarials with improved potency against chloroquine-resistant plasmodia over known drugs. A number of structure-activity relationship (SAR) trends were identified and among the analogues synthesized, the pyrrolidinylmethylarylidene and the imidazole derivatives 5r, 5t, and 8b were found as the most potent antimalarial agents of the new series. The mechanism of action of the novel compounds was investigated and their in vivo activity was assessed.


Molecular Pharmacology | 2006

Identification of tubulin as the molecular target of proapoptotic pyrrolo-1,5-benzoxazepines.

Jude Mulligan; Lisa M. Greene; Suzanne M. Cloonan; Margaret M. Mc Gee; Valeria Onnis; Giuseppe Campiani; Caterina Fattorusso; Mark Lawler; D. Clive Williams; Daniela M. Zisterer

We have demonstrated previously that certain members of a series of novel pyrrolo-1,5-benzoxazepine (PBOX) compounds potently induce apoptosis in a variety of human chemotherapy-resistant cancer cell lines and in primary ex vivo material derived from cancer patients. A better understanding of the molecular mechanisms underlying the apoptotic effects of these PBOX compounds is essential to their development as antineoplastic therapeutic agents. This study sought to test the hypothesis that proapoptotic PBOX compounds target the microtubules. We show that a representative proapoptotic PBOX compound, PBOX-6, induces apoptosis in both the MCF-7 and K562 cell lines. An accumulation of cells in G2/M precedes apoptosis in response to PBOX-6. PBOX-6 induces prometaphase arrest and causes an accumulation of cyclin B1 levels and activation of cyclin B1/CDK1 kinase in a manner similar to that of two representative antimicrotubule agents, nocodazole and paclitaxel. Indirect immunofluorescence demonstrates that both PBOX-6 and another pro-apoptotic PBOX compound, PBOX-15, cause microtubule depolymerization in MCF-7 cells. They also inhibit the assembly of purified tubulin in vitro, whereas a nonapoptotic PBOX compound (PBOX-21) has no effect on either the cellular microtubule network or on the assembly of purified tubulin. This suggests that the molecular target of the pro-apoptotic PBOX compounds is tubulin. PBOX-6 does not bind to either the vinblastine or the colchicine binding site on tubulin, suggesting that it binds to an as-yet-uncharacterised novel site on tubulin. The ability of PBOX-6 to bind tubulin and cause microtubule depolymerization confirms it as a novel candidate for antineoplastic therapy.


Journal of Medicinal Chemistry | 2009

Combining 4-aminoquinoline- and clotrimazole-based pharmacophores toward innovative and potent hybrid antimalarials.

Sandra Gemma; Giuseppe Campiani; Stefania Butini; Bhupendra Prasad Joshi; Gagan Kukreja; Salvatore Sanna Coccone; Matteo Bernetti; Marco Persico; Nacci; Isabella Fiorini; Ettore Novellino; Donatella Taramelli; Nicoletta Basilico; Silvia Parapini; Yardley; Simon L. Croft; Keller-Maerki S; Matthias Rottmann; Reto Brun; M Coletta; S Marini; Giovanna Guiso; Silvio Caccia; Caterina Fattorusso

Antimalarial agents structurally based on novel pharmacophores, synthesized by low-cost synthetic procedures and characterized by low potential for developing resistance are urgently needed. Recently, we developed an innovative class of antimalarials based on a polyaromatic pharmacophore. Hybridizing the 4-aminoquinoline or the 9-aminoacridine system of known antimalarials with the clotrimazole-like pharmacophore, characterized by a polyarylmethyl group, we describe herein the development of a unique class (4a-l and 5a-c) of antimalarials selectively interacting with free heme and interfering with Plasmodium falciparum (Pf) heme metabolism. Combination of the polyarylmethyl system, able to form and stabilize radical intermediates, with the iron-complexing and conjugation-mediated electron transfer properties of the 4(9)-aminoquinoline(acridine) system led to potent antimalarials in vitro against chloroquine sensitive and resistant Pf strains. Among the compounds synthesized, 4g was active in vivo against P. chabaudi and P. berghei after oral administration and, possessing promising pharmacokinetic properties, it is a candidate for further preclinical development.


Bioorganic & Medicinal Chemistry | 2009

Development of antitubercular compounds based on a 4-quinolylhydrazone scaffold. Further structure-activity relationship studies.

Sandra Gemma; Luisa Savini; Maria Altarelli; Pierangela Tripaldi; Luisa Chiasserini; Salvatore Sanna Coccone; Vinod Kumar; Caterina Camodeca; Giuseppe Campiani; Ettore Novellino; Sandra Clarizio; Giovanni Delogu; Stefania Butini

A series of 4-quinolylhydrazones was synthesized and tested in vitro against Mycobacterium tuberculosis. At a concentration of 6.25microg/mL, most of the newly synthesized compounds displayed 100% inhibitory activity against M. tuberculosis in cellular assays. Further screening allowed the identification of very potent antitubercular agents. Compound 4c was also tested in a time-course experiment and against mtb clinical isolates, displaying interesting results.


Journal of Medicinal Chemistry | 2008

Exploiting Protein Fluctuations at the Active-Site Gorge of Human Cholinesterases: Further Optimization of the Design Strategy to Develop Extremely Potent Inhibitors

Stefania Butini; Giuseppe Campiani; Marianna Borriello; Sandra Gemma; Alessandro Panico; Marco Persico; Bruno Catalanotti; Sindu Ros; Margherita Brindisi; Marianna Agnusdei; Isabella Fiorini; Vito Nacci; Ettore Novellino; Tatyana Belinskaya; Ashima Saxena; Caterina Fattorusso

Protein conformational fluctuations are critical for biological functions, although the relationship between protein motion and function has yet to be fully explored. By a thorough bioinformatics analysis of cholinesterases (ChEs), we identified specific hot spots, responsible for protein fluctuations and functions, and those active-site residues that play a role in modulating the cooperative network among the key substructures. This drew the optimization of our design strategy to discover potent and reversible inhibitors of human acetylcholinesterase and butyrylcholinesterase (hAChE and hBuChE) that selectively interact with specific protein substructures. Accordingly, two tricyclic moieties differently spaced by functionalized linkers were investigated as molecular yardsticks to probe the finest interactions with specific hot spots in the hChE gorge. A number of SAR trends were identified, and the multisite inhibitors 3a and 3d were found to be the most potent inhibitors of hBuChE and hAChE known to date.

Collaboration


Dive into the Giuseppe Campiani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ettore Novellino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caterina Fattorusso

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge