Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Fedele is active.

Publication


Featured researches published by Giuseppe Fedele.


Science Signaling | 2010

Identification of the miR-106b∼25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation

Laura Poliseno; Leonardo Salmena; Luisa Riccardi; Alessandro Fornari; Min Sup Song; Robin M. Hobbs; Paolo Sportoletti; Shorheh Varmeh; Ainara Egia; Giuseppe Fedele; Lucia E. Rameh; Massimo Loda; Pier Paolo Pandolfi

A microRNA network regulates the tumor suppressor PTEN in prostate cancer. A Malignant Combination The abundance of microRNAs (miRNAs), tiny non–protein-coding RNAs that act as posttranscriptional regulators of gene expression, is frequently altered in cancer; indeed, various miRNAs are thought to act as oncogenes or tumor suppressors. Poliseno et al. investigated the possible role of miRNA regulation of the tumor suppressor PTEN in prostate cancer. They identified miRNAs from several families that targeted the gene encoding PTEN, thereby decreasing PTEN abundance, and showed that the abundance of some of these miRNAs was increased in human prostate cancer. Intriguingly, three PTEN-targeting miRNAs located within an intron of the gene encoding the DNA helicase minichromosome maintenance protein 7 (MCM7), which shows increased abundance in various human cancers, cooperated with MCM7 to transform fibroblasts in vitro and to initiate tumors when overexpressed in the prostates of transgenic mice. Thus, the MCM7 gene locus appears to encode multiple oncogenic elements that cooperate to promote prostate cancer development. PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a tumor suppressor that antagonizes signaling through the phosphatidylinositol 3-kinase–Akt pathway. We have demonstrated that subtle decreases in PTEN abundance can have critical consequences for tumorigenesis. Here, we used a computational approach to identify miR-22, miR-25, and miR-302 as three PTEN-targeting microRNA (miRNA) families found within nine genomic loci. We showed that miR-22 and the miR-106b~25 cluster are aberrantly overexpressed in human prostate cancer, correlate with abundance of the miRNA processing enzyme DICER, and potentiate cellular transformation both in vitro and in vivo. We demonstrated that the intronic miR-106b~25 cluster cooperates with its host gene MCM7 in cellular transformation both in vitro and in vivo, so that the concomitant overexpression of MCM7 and the miRNA cluster triggers prostatic intraepithelial neoplasia in transgenic mice. Therefore, the MCM7 gene locus delivers two simultaneous oncogenic insults when amplified or overexpressed in human cancer. Thus, we have uncovered a proto-oncogenic miRNA-dependent network for PTEN regulation and defined the MCM7 locus as a critical factor in initiating prostate tumorigenesis.


Nature Medicine | 2010

An oncogene–tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-κB

Junxia Min; Alexander Zaslavsky; Giuseppe Fedele; Sara K McLaughlin; Elizabeth E. Reczek; Thomas De Raedt; Isil Guney; David E. Strochlic; Laura E. MacConaill; Rameen Beroukhim; Roderick T. Bronson; Sandra Ryeom; William C. Hahn; Massimo Loda; Karen Cichowski

Metastasis is responsible for the majority of prostate cancer–related deaths; however, little is known about the molecular mechanisms that underlie this process. Here we identify an oncogene–tumor suppressor cascade that promotes prostate cancer growth and metastasis by coordinately activating the small GTPase Ras and nuclear factor-κB (NF-κB). Specifically, we show that loss of the Ras GTPase-activating protein (RasGAP) gene DAB2IP induces metastatic prostate cancer in an orthotopic mouse tumor model. Notably, DAB2IP functions as a signaling scaffold that coordinately regulates Ras and NF-κB through distinct domains to promote tumor growth and metastasis, respectively. DAB2IP is suppressed in human prostate cancer, where its expression inversely correlates with tumor grade and predicts prognosis. Moreover, we report that epigenetic silencing of DAB2IP is a key mechanism by which the polycomb-group protein histone-lysine N-methyltransferase EZH2 activates Ras and NF-κB and triggers metastasis. These studies define the mechanism by which two major pathways can be simultaneously activated in metastatic prostate cancer and establish EZH2 as a driver of metastasis.


Cancer Cell | 2008

A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression.

Pradip K. Majumder; Chiara Grisanzio; Fionnuala O'Connell; Marc Barry; Joseph Brito; Qing Xu; Isil Guney; Raanan Berger; Paula Herman; Rachel Bikoff; Giuseppe Fedele; Won-Ki Baek; Shunyou Wang; Katharine Ellwood-Yen; Hong Wu; Charles L. Sawyers; Sabina Signoretti; William C. Hahn; Massimo Loda; William R. Sellers

Transgenic expression of activated AKT1 in the murine prostate induces prostatic intraepithelial neoplasia (PIN) that does not progress to invasive prostate cancer (CaP). In luminal epithelial cells of Akt-driven PIN, we show the concomitant induction of p27(Kip1) and senescence. Genetic ablation of p27(Kip1) led to downregulation of senescence markers and progression to cancer. In humans, p27(Kip1) and senescence markers were elevated in PIN not associated with CaP but were decreased or absent, respectively, in cancer-associated PIN and in CaP. Importantly, p27(Kip1) upregulation in mouse and human in situ lesions did not depend upon mTOR or Akt activation but was instead specifically associated with alterations in cell polarity, architecture, and adhesion molecules. These data suggest that a p27(Kip1)-driven checkpoint limits progression of PIN to CaP.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors

Valentina Vaira; Giuseppe Fedele; Saumyadipta Pyne; Ester Fasoli; Giorgia Zadra; Dyane Bailey; Eric L. Snyder; Alice Faversani; Guido Coggi; Richard Flavin; Silvano Bosari; Massimo Loda

Predicting drug response in cancer patients remains a major challenge in the clinic. We have perfected an ex vivo, reproducible, rapid and personalized culture method to investigate antitumoral pharmacological properties that preserves the original cancer microenvironment. Response to signal transduction inhibitors in cancer is determined not only by properties of the drug target but also by mutations in other signaling molecules and the tumor microenvironment. As a proof of concept, we, therefore, focused on the PI3K/Akt signaling pathway, because it plays a prominent role in cancer and its activity is affected by epithelial–stromal interactions. Our results show that this culture model preserves tissue 3D architecture, cell viability, pathway activity, and global gene-expression profiles up to 5 days ex vivo. In addition, we show pathway modulation in tumor cells resulting from pharmacologic intervention in ex vivo culture. This technology may have a significant impact on patient selection for clinical trials and in predicting response to small-molecule inhibitor therapy.


Cancer Research | 2008

The Chemokine Receptor CX3CR1 Is Involved in the Neural Tropism and Malignant Behavior of Pancreatic Ductal Adenocarcinoma

Federica Marchesi; Lorenzo Piemonti; Giuseppe Fedele; Annarita Destro; Massimo Roncalli; Luca Albarello; Claudio Doglioni; Achille Anselmo; Andrea Doni; Paolo Bianchi; Luigi Laghi; Alberto Malesci; Luigi Cervo; MariaLuisa Malosio; Michele Reni; Alessandro Zerbi; Valerio Di Carlo; Alberto Mantovani; Paola Allavena

Tumor perineural dissemination is a hallmark of human pancreatic ductal adenocarcinoma (PDAC) and represents a major source of local tumor recurrence after surgery. In this study, we provide in vitro and in vivo evidence that the chemokine receptor CX3CR1 may be involved in the neurotropism of PDAC cells to local peripheral nerves. Neoplastic cells from PDAC cell lines and surgical specimens express the chemokine receptor CX3CR1, absent in normal pancreatic ducts. Its unique ligand, the transmembrane chemokine CX3CL1, is expressed by neurons and nerve fibers. CX3CR1 + PDAC cell lines migrated in response to human recombinant CX3CL1 and specifically adhered to CX3CL1-expressing cells of neural origin via mechanisms involving activation of G proteins, beta1 integrins, and focal adhesion kinase. In vivo experiments with transplanted PDAC showed that only CX3CR1-transfected tumor cells infiltrated the local peripheral nerves. Immunohistochemistry of CX3CR1 in PDAC specimens revealed that 90% of the samples were positive with a heterogeneous pattern of expression. High receptor score was significantly associated with more prominent tumor perineural infiltration evaluated histologically (P = 0.026). Regression analyses (univariate and multivariate) showed that high CX3CR1 expression and perineural invasion were strongly associated with local and earlier tumor recurrence (P = 0.007). Collectively, this study shows that the CX3CR1 receptor may be involved in PDAC tumor neurotropism and is a relevant and independent risk factor to predict an early local tumor relapse in resected patients. Thus, the CX3CR1-CX3CL1 axis could represent a valuable therapeutic target to prevent tumor perineural dissemination in pancreatic cancer.


Journal of Clinical Oncology | 2010

Fatty Acid Synthase Polymorphisms, Tumor Expression, Body Mass Index, Prostate Cancer Risk, and Survival

Paul L. Nguyen; Jing Ma; Jorge E. Chavarro; Matthew L. Freedman; Rosina T. Lis; Giuseppe Fedele; Christopher Fiore; Weiliang Qiu; Michelangelo Fiorentino; Stephen Finn; Kathryn L. Penney; Anna S. Eisenstein; Fredrick R. Schumacher; Lorelei A. Mucci; Meir J. Stampfer; Edward Giovannucci; Massimo Loda

PURPOSE Fatty acid synthase (FASN) regulates de novo lipogenesis, body weight, and tumor growth. We examined whether common germline single nucleotide polymorphisms (SNPs) in the FASN gene affect prostate cancer (PCa) risk or PCa-specific mortality and whether these effects vary by body mass index (BMI). METHODS In a prospective nested case-control study of 1,331 white patients with PCa and 1,267 age-matched controls, we examined associations of five common SNPs within FASN (and 5 kb upstream/downstream, R(2) > 0.8) with PCa incidence and, among patients, PCa-specific death and tested for an interaction with BMI. Survival analyses were repeated for tumor FASN expression (n = 909). RESULTS Four of the five SNPs were associated with lethal PCa. SNP rs1127678 was significantly related to higher BMI and interacted with BMI for both PCa risk (P(interaction) = .004) and PCa mortality (P(interaction) = .056). Among overweight men (BMI > or = 25 kg/m(2)), but not leaner men, the homozygous variant allele carried a relative risk of advanced PCa of 2.49 (95% CI, 1.00 to 6.23) compared with lean men with the wild type. Overweight patients carrying the variant allele had a 2.04 (95% CI, 1.31 to 3.17) times higher risk of PCa mortality. Similarly, overweight patients with elevated tumor FASN expression had a 2.73 (95% CI, 1.05 to 7.08) times higher risk of lethal PCa (P(interaction) = .02). CONCLUSION FASN germline polymorphisms were significantly associated with risk of lethal PCa. Significant interactions of BMI with FASN polymorphisms and FASN tumor expression suggest FASN as a potential link between obesity and poor PCa outcome and raise the possibility that FASN inhibition could reduce PCa-specific mortality, particularly in overweight men.


Embo Molecular Medicine | 2014

A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis

Giorgia Zadra; Cornelia Photopoulos; Svitlana Tyekucheva; Pedram Heidari; Qing Ping Weng; Giuseppe Fedele; Hong Liu; Natalia Scaglia; Carmen Priolo; Ewa Sicinska; Umar Mahmood; Sabina Signoretti; Neal Birnberg; Massimo Loda

5′AMP‐activated kinase (AMPK) constitutes a hub for cellular metabolic and growth control, thus representing an ideal therapeutic target for prostate cancers (PCas) characterized by increased lipogenesis and activation of mTORC1 pathway. However, whether AMPK activation itself is sufficient to block cancer cell growth remains to be determined. A small molecule screening was performed and identified MT 63–78, a specific and potent direct AMPK activator. Here, we show that direct activation of AMPK inhibits PCa cell growth in androgen sensitive and castration resistant PCa (CRPC) models, induces mitotic arrest, and apoptosis. In vivo, AMPK activation is sufficient to reduce PCa growth, whereas the allelic loss of its catalytic subunits fosters PCa development. Importantly, despite mTORC1 blockade, the suppression of de novo lipogenesis is the underpinning mechanism responsible for AMPK‐mediated PCa growth inhibition, suggesting AMPK as a therapeutic target especially for lipogenesis‐driven PCas. Finally, we demonstrate that MT 63–78 enhances the growth inhibitory effect of AR signaling inhibitors MDV3100 and abiraterone. This study thus provides a rationale for their combined use in CRPC treatment.


Cancer Research | 2011

Differential Expression of S6K2 Dictates Tissue-Specific Requirement for S6K1 in Mediating Aberrant mTORC1 Signaling and Tumorigenesis

Caterina Nardella; Andrea Lunardi; Giuseppe Fedele; John G. Clohessy; Andrea Alimonti; Sara C. Kozma; George Thomas; Massimo Loda; Pier Paolo Pandolfi

The S6K1 and S6K2 kinases are considered important mTOR signaling effectors, yet their contribution to tumorigenesis remains unclear. Aberrant mTOR activation is a frequent event in cancer that commonly results from heterozygous loss of PTEN. Here, we show for the first time a differential protein expression between S6K1 and S6K2 in both mouse and human tissues. Additionally, the inactivation of S6k1 in the context of Pten heterozygosity (Pten(+/-)) suggests a differential requirement for this protein across multiple tissues. This tissue specificity appears to be governed by the relative protein expression of S6k2. Accordingly, we find that deletion of S6k1 markedly impairs Pten(+/-) mediated adrenal tumorigenesis, specifically due to low expression of S6k2. Concomitant observation of low S6K2 levels in the human adrenal gland supports the development of S6K1 inhibitors for treatment of PTEN loss-driven pheochromocytoma.


Molecular Cancer Research | 2015

Measuring PI3K Activation: Clinicopathologic, Immunohistochemical, and RNA Expression Analysis in Prostate Cancer

Neil E. Martin; Travis Gerke; Jennifer A. Sinnott; Edward C. Stack; Ove Andrén; Swen-Olof Andersson; Jan-Erik Johansson; Michelangelo Fiorentino; Stephen Finn; Giuseppe Fedele; Meir J. Stampfer; Philip W. Kantoff; Lorelei A. Mucci; Massimo Loda

Assessing the extent of PI3K pathway activity in cancer is vital to predicting sensitivity to PI3K-targeting drugs, but the best biomarker of PI3K pathway activity in archival tumor specimens is unclear. Here, PI3K pathway activation was assessed, in clinical tissue from 1,021 men with prostate cancers, using multiple pathway nodes that include PTEN, phosphorylated AKT (pAKT), phosphorylated ribosomal protein S6 (pS6), and stathmin. Based on these markers, a 9-point score of PI3K activation was created using the combined intensity of the 4-markers and analyzed its association with proliferation (Ki67), apoptosis (TUNEL), and androgen receptor (AR) status, as well as pathologic features and cancer-specific outcomes. In addition, the PI3K activation score was compared with mRNA expression profiling data for a large subset of men. Interestingly, those tumors with higher PI3K activation scores also had higher Gleason grade (P = 0.006), increased AR (r = 0.37; P < 0.001) and Ki67 (r = 0.24; P < 0.001), and decreased TUNEL (r = −0.12; P = 0.003). Although the PI3K activation score was not associated with an increased risk of lethal outcome, a significant interaction between lethal outcome, Gleason and high PI3K score (P = 0.03) was observed. Finally, enrichment of PI3K-specific pathways was found in the mRNA expression patterns differentiating the low and high PI3K activation scores; thus, the 4-marker IHC score of PI3K pathway activity correlates with features of PI3K activation. Implications: The relationship of this activation score to sensitivity to anti-PI3K agents remains to be tested but may provide more precision guidance when selecting patients for these therapies. Mol Cancer Res; 13(10); 1431–40. ©2015 AACR.


Cancer | 2015

Patterns of psychiatric medication use among nationally representative long‐term cancer survivors and controls

I. Braun; Sowmya R. Rao; Fremonta Meyer; Giuseppe Fedele

Investigations of long‐term cancer survivors (LTCS) indicate that this population is not appreciably different from cancer‐naive peers with respect to several neuropsychiatric domains. The current study sought to determine whether differences in psychiatric medication use might help to explain the negative findings.

Collaboration


Dive into the Giuseppe Fedele's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pier Paolo Pandolfi

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvano Bosari

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen Priolo

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge