Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Gallo is active.

Publication


Featured researches published by Giuseppe Gallo.


Proteomics | 2010

Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina

Giuseppe Gallo; Giovanni Renzone; Rosa Alduina; Efthimia Stegmann; Tilmann Weber; Anna Eliasson Lantz; Jette Thykaer; Fabio Sangiorgi; Andrea Scaloni; Anna Maria Puglia

A differential proteomic analysis, based on 2‐DE and MS procedures, was performed on Amycolatopsis balhimycina DSM5908, the actinomycete producing the vancomycin‐like antibiotic balhimycin. A comparison of proteomic profiles before and during balhimycin production characterized differentially and constitutively expressed protein isoforms, which were associated with 203 ORFs in the A. balhimycina genome. These data, providing insights on the major metabolic pathways/molecular processes operating in this organism, were used to compile 2‐DE reference maps covering 3–10, 4–7 and 4.5–5.5 pH gradients available over the World Wide Web as interactive web pages (http://www.unipa.it/ampuglia/Abal‐proteome‐maps). Functional clustering analysis revealed that differentially expressed proteins belong to functional groups involved in central carbon metabolism, amino acid metabolism and protein biosynthesis, energetic and redox balance, sugar/amino sugar metabolism, balhimycin biosynthesis and transcriptional regulation or with hypothetical and/or unknown function. Interestingly, proteins involved in the biosynthesis of balhimycin precursors, such as amino acids, amino sugars and central carbon metabolism intermediates, were upregulated during antibiotic production. qRT‐PCR analysis revealed that 8 out of 14 upregulated genes showed a positive correlation between changes at translational and transcriptional expression level. Furthermore, proteomic analysis of two nonproducing mutants, restricted to a sub‐set of differentially expressed proteins, showed that most proteins required for the biosynthesis of balhimycin precursors are downregulated in both mutants. These findings suggest that primary metabolic pathways support anabolic routes leading to balhimycin biosynthesis and the differentially expressed genes are interesting targets for the construction of high‐yielding producer strains by rational genetic engineering.


BioMed Research International | 2012

Artificial Chromosomes to Explore and to Exploit Biosynthetic Capabilities of Actinomycetes

Rosa Alduina; Giuseppe Gallo

Actinomycetes are an important source of biologically active compounds, like antibiotics, antitumor agents, and immunosuppressors. Genome sequencing is revealing that this class of microorganisms has larger genomes relative to other bacteria and uses a considerable fraction of its coding capacity (5–10%) for the production of mostly cryptic secondary metabolites. To access actinomycetes biosynthetic capabilities or to improve the pharmacokinetic properties and production yields of these chemically complex compounds, genetic manipulation of the producer strains can be performed. Heterologous expression in amenable hosts can be useful to exploit and to explore the genetic potential of actinomycetes and not cultivable but interesting bacteria. Artificial chromosomes that can be stably integrated into the Streptomyces genome were constructed and demonstrated to be effective for transferring entire biosynthetic gene clusters from intractable actinomycetes into more suitable hosts. In this paper, the construction of several shuttle Escherichia coli-Streptomyces artificial chromosomes is discussed together with old and new strategies applied to improve heterologous production of secondary metabolites.


Microbial Cell Factories | 2012

Adaptative biochemical pathways and regulatory networks in Klebsiella oxytoca BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation

Giuseppe Gallo; Franco Baldi; Giovanni Renzone; Michele Gallo; Antonio Cordaro; Andrea Scaloni; Anna Maria Puglia

BackgroundA bacterial strain previously isolated from pyrite mine drainage and named BAS-10 was tentatively identified as Klebsiella oxytoca. Unlikely other enterobacteria, BAS-10 is able to grow on Fe(III)-citrate as sole carbon and energy source, yielding acetic acid and CO2 coupled with Fe(III) reduction to Fe(II) and showing unusual physiological characteristics. In fact, under this growth condition, BAS-10 produces an exopolysaccharide (EPS) having a high rhamnose content and metal-binding properties, whose biotechnological applications were proven as very relevant.ResultsFurther phylogenetic analysis, based on 16S rDNA sequence, definitively confirmed that BAS-10 belongs to K. oxytoca species. In order to rationalize the biochemical peculiarities of this unusual enterobacteriun, combined 2D-Differential Gel Electrophoresis (2D-DIGE) analysis and mass spectrometry procedures were used to investigate its proteomic changes: i) under aerobic or anaerobic cultivation with Fe(III)-citrate as sole carbon source; ii) under anaerobic cultivations using Na(I)-citrate or Fe(III)-citrate as sole carbon source. Combining data from these differential studies peculiar levels of outer membrane proteins, key regulatory factors of carbon and nitrogen metabolism and enzymes involved in TCA cycle and sugar biosynthesis or required for citrate fermentation and stress response during anaerobic growth on Fe(III)-citrate were revealed. The protein differential regulation seems to ensure efficient cell growth coupled with EPS production by adapting metabolic and biochemical processes in order to face iron toxicity and to optimize energy production.ConclusionDifferential proteomics provided insights on the molecular mechanisms necessary for anaeorobic utilization of Fe(III)-citrate in a biotechnologically promising enterobacteriun, also revealing genes that can be targeted for the rational design of high-yielding EPS producer strains.


Microbial Cell Factories | 2010

Differential proteomic analysis highlights metabolic strategies associated with balhimycin production in Amycolatopsis balhimycina chemostat cultivations.

Giuseppe Gallo; Rosa Alduina; Giovanni Renzone; Jette Thykaer; Linda Bianco; Anna Eliasson-Lantz; Andrea Scaloni; Anna Maria Puglia

BackgroundProteomics was recently used to reveal enzymes whose expression is associated with the production of the glycopeptide antibiotic balhimycin in Amycolatopsis balhimycina batch cultivations. Combining chemostat fermentation technology, where cells proliferate with constant parameters in a highly reproducible steady-state, and differential proteomics, the relationships between physiological status and metabolic pathways during antibiotic producing and non-producing conditions could be highlighted.ResultsTwo minimal defined media, one with low Pi (0.6 mM; LP) and proficient glucose (12 g/l) concentrations and the other one with high Pi (1.8 mM) and limiting (6 g/l; LG) glucose concentrations, were developed to promote and repress antibiotic production, respectively, in A. balhimycina chemostat cultivations. Applying the same dilution rate (0.03 h-1), both LG and LP chemostat cultivations showed a stable steady-state where biomass production yield coefficients, calculated on glucose consumption, were 0.38 ± 0.02 and 0.33 ± 0.02 g/g (biomass dry weight/glucose), respectively. Notably, balhimycin was detected only in LP, where quantitative RT-PCR revealed upregulation of selected bal genes, devoted to balhimycin biosynthesis, and of phoP, phoR, pstS and phoD, known to be associated to Pi limitation stress response. 2D-Differential Gel Electrophoresis (DIGE) and protein identification, performed by mass spectrometry and computer-assisted 2 D reference-map http://www.unipa.it/ampuglia/Abal-proteome-maps matching, demonstrated a differential expression for proteins involved in many metabolic pathways or cellular processes, including central carbon and phosphate metabolism. Interestingly, proteins playing a key role in generation of primary metabolism intermediates and cofactors required for balhimycin biosynthesis were upregulated in LP. Finally, a bioinformatic approach showed PHO box-like regulatory elements in the upstream regions of nine differentially expressed genes, among which two were tested by electrophoresis mobility shift assays (EMSA).ConclusionIn the two chemostat conditions, used to generate biomass for proteomic analysis, mycelia grew with the same rate and with similar glucose-biomass conversion efficiencies. Global gene expression analysis revealed a differential metabolic adaptation, highlighting strategies for energetic supply and biosynthesis of metabolic intermediates required for biomass production and, in LP, for balhimycin biosynthesis. These data, confirming a relationship between primary metabolism and antibiotic production, could be used to increase antibiotic yield both by rational genetic engineering and fermentation processes improvement.


Applied Microbiology and Biotechnology | 2005

Expression in Streptomyces lividans of Nonomuraea genes cloned in an artificial chromosome

Rosa Alduina; Anna Giardina; Giuseppe Gallo; Giovanni Renzone; Clelia Ferraro; Alba Contino; Andrea Scaloni; Stefano Donadio; Anna Maria Puglia

A bacterial artificial chromosomal library of Nonomuraea sp. ATCC39727 was constructed using Escherichia coli–Streptomyces artificial chromosome (ESAC) and screened for the presence of dbv genes known to be involved in the biosynthesis of the glycopeptide A40926. dbv genes were cloned as two large, partially overlapping, fragments and transferred into the host Streptomyces lividans, thus generating strains S. lividans∷NmESAC50 and S. lividans∷NmESAC57. The heterologous expression of Nonomuraea genes in S. lividans was successfully demonstrated by using combined RT–PCR and proteomic approaches. MALDI-TOF analysis revealed that a Nonomuraea ABC transporter is expressed as two isoforms in S. lividans. Moreover, its expression may not require a Nonomuraea positive regulator at all, as it is present at similar levels in both clones even though S. lividans∷NmESAC57 lacks regulatory genes. Considered together, these results show that S. lividans expresses Nonomuraea genes from their own promoters and support the idea that S. lividans can be a good host for genetic analysis of Nonomuraea.


Genome Announcements | 2014

Draft Genome Sequence of the Microbispora sp. Strain ATCC-PTA-5024, Producing the Lantibiotic NAI-107

Margherita Sosio; Giuseppe Gallo; Roberta Pozzi; Stefania Serina; Paolo Monciardini; Agnieska Bera; Evi Stegmann; Tilmann Weber

ABSTRACT We report the draft genome sequence of Microbispora sp. strain ATCC-PTA-5024, a soil isolate that produces NAI-107, a new lantibiotic with the potential to treat life-threatening infections caused by multidrug-resistant Gram-positive pathogens. The draft genome of strain Microbispora sp. ATCC-PTA-5024 consists of 8,543,819 bp, with a 71.2% G+C content and 7,860 protein-coding genes.


Oncotarget | 2017

Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation

Miriam Buttacavoli; Nadia Ninfa Albanese; Gianluca Di Cara; Rosa Alduina; Claudia Faleri; Michele Gallo; Giuseppe Pizzolanti; Giuseppe Gallo; Salvatore Feo; Franco Baldi; Patrizia Cancemi

Silver nanoparticles (AgNPs), embedded into a specific polysaccharide (EPS), were biogenerated by Klebsiella oxytoca DSM 29614 under aerobic (AgNPs-EPSaer) and anaerobic conditions (AgNPs-EPSanaer). Both AgNPs-EPS matrices were tested by MTT assay for cytotoxic activity against human breast (SKBR3 and 8701-BC) and colon (HT-29, HCT 116 and Caco-2) cancer cell lines, revealing AgNPs-EPSaer as the most active, in terms of IC50, with a more pronounced efficacy against breast cancer cell lines. Therefore, colony forming capability, morphological changes, generation of reactive oxygen species (ROS), induction of apoptosis and autophagy, inhibition of migratory and invasive capabilities and proteomic changes were investigated using SKBR3 breast cancer cells with the aim to elucidate AgNPs-EPSaer mode of action. In particular, AgNPs-EPSaer induced a significant decrease of cell motility and MMP-2 and MMP-9 activity and a significant increase of ROS generation, which, in turn, supported cell death mainly through autophagy and in a minor extend through apoptosis. Consistently, TEM micrographs and the determination of total silver in subcellular fractions indicated that the Ag+ accumulated preferentially in mitochondria and in smaller concentrations in nucleus, where interact with DNA. Interestingly, these evidences were confirmed by a differential proteomic analysis that highlighted important pathways involved in AgNPs-EPSaer toxicity, including endoplasmic reticulum stress, oxidative stress and mitochondrial impairment triggering cell death trough apoptosis and/or autophagy activation.


Applied Microbiology and Biotechnology | 2015

Tryptophan promotes morphological and physiological differentiation in Streptomyces coelicolor

E. Palazzotto; Giovanni Renzone; Pietro Fontana; Luigi Botta; Andrea Scaloni; Anna Maria Puglia; Giuseppe Gallo

The molecular mechanisms regulating tryptophan biosynthesis in actinomycetes are poorly understood; similarly, the possible roles of tryptophan in the differentiation program of microorganism life-cycle are still underexplored. To unveil the possible regulatory effect of this amino acid on gene expression, an integrated study based on quantitative teverse transcription-PCR (qRT-PCR) and proteomic approaches was performed on the actinomycete model Streptomyces coelicolor. Comparative analyses on the microorganism growth in a minimal medium with or without tryptophan supplementation showed that biosynthetic trp gene expression in S. coelicolor is not subjected to a negative regulation by the presence of the end product. Conversely, tryptophan specifically induces the transcription of trp genes present in the biosynthetic gene cluster of the calcium-dependent antibiotic (CDA), a lipopeptide containing d- and l-tryptophan residues. In addition, tryptophan stimulates the transcription of the CDA gene cluster regulator cdaR and, coherently, CDA production. Surprisingly, tryptophan also promotes the production of actinorhodin, another antibiotic that does not contain this amino acid in its structure. Combined 2D-DIGE and nano liquid chromatography electrospray linear ion trap tandem mass spectrometry (LC-ESI-LIT-MS/MS) analyses revealed that tryptophan exerts a growth-stage-dependent global effect on S. coelicolor proteome, stimulating anabolic pathways and promoting the accumulation of key factors associated with morphological and physiological differentiation at the late growth stages. Phenotypic observations by scanning electron microscopy and spore production assays demonstrated an increased sporulation in the presence of tryptophan. Transcriptional analysis of catabolic genes kynA and kynB suggested that the actinomycete also uses tryptophan as a carbon and nitrogen source. In conclusion, this study originally provides the molecular basis underlying the stimulatory effect of tryptophan on the production of antibiotics and morphological development program of this actinomycete.


Plant and Soil | 2018

The seed endosphere of Anadenanthera colubrina is inhabited by a complex microbiota, including Methylobacteriumspp. and Staphylococcus spp. with potential plant-growth promoting activities

Pasquale Alibrandi; Massimiliano Cardinale; Mahafizur Rahman; Francesco Strati; Paolo Ciná; Marta L. de Viana; Eugenia Mabel Giamminola; Giuseppe Gallo; Sylvia Schnell; Carlotta De Filippo; Mirella Ciaccio; Anna Maria Puglia

Background and aimsPlant seeds are emerging micro–habitats, whose importance as reservoir and vector of beneficial microbes just begins to be recognized. Here we aimed to characterize the bacterial microbiota of the Anadenanthera colubrina seed endosphere, with special focus to beneficial traits and to the colonization pattern.MethodsCultivation–dependent (isolation from surface–sterilized seeds) and cultivation–independent (pyrosequencing of 16S rRNA gene from metagenomic seed DNA) analyses, functional tests and microscopical investigations (fluorescence in situ hybridization coupled with confocal laser scanning microscopy (FISH-CLSM) were performed.ResultsWe isolated several Methylobacterium and Staphylococcus spp., exhibiting both plant growth promotion and antimicrobial activities. The two taxonomic groups showed complementary traits, which supports a functional selection. Both genera were detected also by pyrosequencing, together with further taxa. The genera Friedmaniella, Bifidobacterium, Delftia, Anaerococcus and Actinomyces appeared here for the first time as seed endophytes. We detected bacterial cells and micro–colonies in seed cryosections by FISH-CLSM. Alphaproteobacteria, Firmicutes and other bacteria colonized intercellular spaces of the parenchyma and associated to transport vessels.ConclusionsThis work sheds light onto the diversity, functions and colonization pattern of the Anadenanthera colubrina seed endophytes, and strongly suggest a role as beneficial partners for seed-associated microbiota.


RSC Advances | 2016

Photosynthesized silver–polyaminocyclodextrin nanocomposites as promising antibacterial agents with improved activity

Marco Russo; Alessandro Meli; Alberto Sutera; Giuseppe Gallo; Delia Chillura Martino; Paolo Lo Meo; Renato Noto

Ag nanocomposites were prepared by photoreduction of ammoniacal silver acetate in the presence of poly-{6-[3-(2-(3-aminopropylamino)ethylamino)propylamino]}-(6-deoxy)-β-CD (amCD). The obtained systems were characterized by means of various complementary techniques (UV-vis, FT-IR, TEM, SAED). In particular, FT-IR spectroscopy evidenced a partial oxidative degradation of the polyamine branches of the capping auxiliary, due to the fact that these groups function as a sacrificial reducing agent in the photoinduced formation of the Ag metal core. TEM and SAED micrographs showed that the Ag cores possess a relatively low polydispersity and a significantly crystalline character. The Ag–amCD systems were assayed for antibacterial activity, using Escherichia coli and Kocuria rhizophila as Gram-negative and Gram-positive tester strains respectively. In addition, the systems function as supramolecular drug carriers, able to bind the β-lactam antibiotic ampicillin, as demonstrated by polarimetric measurements. Antimicrobial assays revealed MIC90 values against E. coli and K. rhizophila as large as a 5 and 1 μg mL−1 respectively. Moreover, the interaction of the Ag–amCD with ampicillin resulted in a synergistic improvement of the antibacterial activity. This study provides insights on the attractive possibility to use a photochemical methodology to produce bioactive supramolecular systems to be employed as powerful and tunable antimicrobial agents.

Collaboration


Dive into the Giuseppe Gallo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Scaloni

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge