Giuseppe Guarnieri
University of Salento
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giuseppe Guarnieri.
Marine Pollution Bulletin | 2008
Antonio Terlizzi; Stanislao Bevilacqua; Danilo Scuderi; Dario Fiorentino; Giuseppe Guarnieri; Adriana Giangrande; Margherita Licciano; Serena Felline; Simonetta Fraschetti
The exploitation of fossil fuels in the Mediterranean Sea will likely lead to an increase in the number of offshore platforms, a recognized threat for marine biodiversity. To date, in this basin, few attempts have been made to assess the impact of offshore gas and oil platforms on the biodiversity of benthic assemblages. Here, we adopted a structured experimental design coupled with high taxonomic resolution to outline putative effects of gas platforms on soft-bottom macrofauna assemblages in the North Ionian Sea. The analysis was based on a total of 20,295 specimens of 405 taxa, almost entirely identified at species level. Multivariate and univariate analyses showed idiosyncratic patterns of assemblage change with increasing distance from the platforms. Potential reasons underlying such inconsistency are analyzed and the view that structured experimental monitoring is a crucial tool to quantify the extent and magnitude of potential threats and to provide sound baseline information on biodiversity patterns is supported.
Journal of Coastal Research | 2011
Simonetta Fraschetti; Antonio Terlizzi; Giuseppe Guarnieri; Fausto Pizzolante; Paolo D'Ambrosio; Porzia Maiorano; Saimir Beqiraj; Ferdinando Boero
Abstract Human activities determine dramatic changes in natural systems, especially in marine coastal areas. This is especially true when economic development is fast and scarcely regulated, representing a serious threat to biodiversity. Besides the obvious prediction of impairment of natural systems, forecasting the effects of human activities can be particularly challenging since they affect species and assemblages, the patterns of distribution and extent of which are often totally unknown. In Vlora Bay, we show through an interdisciplinary project that 15 y of coastal development can result in a loss of over 50% of seagrass cover and a decline in macroalgae cover such as Cystoseira spp., which are structurally and functionally crucial habitats that provide essential goods and services for local human communities and recreation. Furthermore, illegal fishery practices (date mussel fishery, trawling, and use of explosives) contribute to depict a scenario of fragmentation and loss of shallow species-rich assemblages. Large-scale changes in sedimentation patterns have been recognised as one of the main drivers of those changes. This model of development, associated with nearly irreversible environmental consequences, as observed in Albania, can serve as an example for many other Mediterranean areas, showing a combination of high biodiversity and low protection regime. We discuss the urgent need for ecosystem-based management to ensure sustainable development while conserving and managing natural biodiversity and resources.
PLOS ONE | 2013
Simonetta Fraschetti; Giuseppe Guarnieri; Stanislao Bevilacqua; Antonio Terlizzi; Ferdinando Boero
Rare evidences support that Marine Protected Areas (MPAs) enhance the stability of marine habitats and assemblages. Based on nine years of observation (2001–2009) inside and outside a well managed MPA, we assessed the potential of conservation and management actions to modify patterns of spatial and/or temporal variability of Posidonia oceanica meadows, the lower midlittoral and the shallow infralittoral rock assemblages. Significant differences in both temporal variations and spatial patterns were observed between protected and unprotected locations. A lower temporal variability in the protected vs. unprotected assemblages was found in the shallow infralittoral, demonstrating that, at least at local scale, protection can enhance community stability. Macrobenthos with long-lived and relatively slow-growing invertebrates and structurally complex algal forms were homogeneously distributed in space and went through little fluctuations in time. In contrast, a mosaic of disturbed patches featured unprotected locations, with small-scale shifts from macroalgal stands to barrens, and harsh temporal variations between the two states. Opposite patterns of spatial and temporal variability were found for the midlittoral assemblages. Despite an overall clear pattern of seagrass regression through time, protected meadows showed a significantly higher shoot density than unprotected ones, suggesting a higher resistance to local human activities. Our results support the assumption that the exclusion/management of human activities within MPAs enhance the stability of the structural components of protected marine systems, reverting or arresting threat-induced trajectories of change.
Biofouling | 2009
Giuseppe Guarnieri; Antonio Terlizzi; Stanislao Bevilacqua; Simonetta Fraschetti
Substratum type and topographic complexity influence the settlement and persistence of benthic organisms. However, the combined effect of these two factors in affecting colonization patterns at different scales has rarely been investigated. A manipulative experiment was conducted to test the interplay of rock type and roughness in affecting the pattern of subtidal assemblages and to provide tests for the generality of effects across a range of spatial scales (centimetres to hundreds of metres). Replicate tiles of four different rock types, with two levels of surface roughness were deployed in rocky subtidal habitats (5 m depth) at two sites (separated by hundreds of metres) at each of three locations (separated by tens of kilometres). Spatial and temporal variation in the colonization patterns over 9 months differed among rock types. However, large-scale processes appeared to be far more important than substratum type or roughness in determining assemblage structure. Predicting the consequences of the introduction of artificial structures into the coastal marine environment is critical as increasingly parts of coastlines are being modified within the Mediterranean and other regions. The results suggest that further investment is needed to manage and mitigate the effects of the deployment of artificial structures in coastal areas.
Ecology and Evolution | 2017
Marta Paterno; Marcello Schiavina; Giorgio Aglieri; Jamila Ben Souissi; Elisa Boscari; Renato Casagrandi; Aurore Chassanite; Mariachiara Chiantore; Leonardo Congiu; Giuseppe Guarnieri; Vesna Mačić; Ilaria A. M. Marino; Chiara Papetti; Tomaso Patarnello; Lorenzo Zane; Paco Melià
Abstract Connectivity between populations influences both their dynamics and the genetic structuring of species. In this study, we explored connectivity patterns of a marine species with long‐distance dispersal, the edible common sea urchin Paracentrotus lividus, focusing mainly on the Adriatic–Ionian basins (Central Mediterranean). We applied a multidisciplinary approach integrating population genomics, based on 1,122 single nucleotide polymorphisms (SNPs) obtained from 2b‐RAD in 275 samples, with Lagrangian simulations performed with a biophysical model of larval dispersal. We detected genetic homogeneity among eight population samples collected in the focal Adriatic–Ionian area, whereas weak but significant differentiation was found with respect to two samples from the Western Mediterranean (France and Tunisia). This result was not affected by the few putative outlier loci identified in our dataset. Lagrangian simulations found a significant potential for larval exchange among the eight Adriatic–Ionian locations, supporting the hypothesis of connectivity of P. lividus populations in this area. A peculiar pattern emerged from the comparison of our results with those obtained from published P. lividus cytochrome b (cytb) sequences, the latter revealing genetic differentiation in the same geographic area despite a smaller sample size and a lower power to detect differences. The comparison with studies conducted using nuclear markers on other species with similar pelagic larval durations in the same Adriatic–Ionian locations indicates species‐specific differences in genetic connectivity patterns and warns against generalizing single‐species results to the entire community of rocky shore habitats.
PLOS ONE | 2016
Giuseppe Guarnieri; Stanislao Bevilacqua; Francesco De Leo; Giulio Farella; Anna Maffia; Antonio Terlizzi; Simonetta Fraschetti
Assessing the distribution and intensity of human threats to biodiversity is a prerequisite for effective spatial planning, harmonizing conservation purposes with sustainable development. In the Mediterranean Sea, the management of Marine Protected Areas (MPAs) is rarely based on explicit consideration of the distribution of multiple stressors, with direct assessment of their effects on ecosystems. This gap limits the effectiveness of protection and is conducive to conflicts among stakeholders. Here, a fine scale assessment of the potential effects of different combinations of stressors (both land- and marine-based) on vulnerable rocky habitats (i.e. lower midlittoral and shallow infralittoral) along 40 km of coast in the western Mediterranean (Ionian Sea) has been carried out. The study area is a paradigmatic example of socio-ecological interactions, where several human uses and conservation measures collide. Significant differences in the structure of assemblages according to different combinations of threats were observed, indicating distinct responses of marine habitats to different sets of human pressures. A more complex three-dimensional structure, higher taxon richness and β-diversity characterized assemblages subject to low versus high levels of human pressure, consistently across habitats. In addition, the main drivers of change were: closeness to the harbour, water quality, and the relative extension of beaches. Our findings suggest that, although efforts to assess cumulative impacts at large scale may help in individuating priority areas for conservation purposes, the fact that such evaluations are often based on expert opinions and not on actual studies limits their ability to represent real environmental conditions at local scale. Systematic evaluations of local scale effects of anthropogenic drivers of change on biological communities should complement broad scale management strategies to achieve effective sustainability of human exploitation of marine resources.
Oecologia | 2014
Giuseppe Guarnieri; Stanislao Bevilacqua; Fabio Vignes; Simonetta Fraschetti
Increasing anthropogenic pressures are causing long-lasting regime shifts from high-diversity ecosystems to low-diversity degraded ones. Understanding the effects of multiple threats on ecosystems, and identifying processes allowing for the recovery of biodiversity, are the current major challenges in ecology. In several temperate marine areas, large parts of rocky subtidal habitats characterised by high diversity have been completely degraded to barren grounds by overfishing, including illegal date mussel fishing. Bare areas are characterized by the dominance of sea urchins whose grazing perpetuates the impact of overfishing. We investigated experimentally the separate and combined effects of nutrient enrichment and sea urchin exclusion on the recovery of barren grounds. Our results indicate that the two factors have a synergistic effect leading to the re-establishment of erect macroalgal canopies, enhancing the structural complexity of subtidal assemblages. In particular, in the overfished system considered here, the recovery of disturbed assemblages could occur only if sea urchins are removed. However, the recolonization of barren grounds by erect macroalgae is further enhanced under enriched conditions. This study demonstrates that the recovery of dramatically depleted marine habitats is possible, and provides useful indications for specific management actions, which at present are totally lacking, to achieve the restoration of barren grounds caused by human activity.
Scientific Reports | 2018
Stanislao Bevilacqua; Giuseppe Guarnieri; G. Farella; Antonio Terlizzi; Simonetta Fraschetti
In the last decade, the ‘Cumulative Pressure and Impact Assessment’ (CPIA) approach emerged as a tool to map expected impacts on marine ecosystems. However, CPIA assumes a linear response of ecosystems to increasing level of cumulative pressure weighting sensitivity to different anthropogenic pressures through expert judgement. We applied CPIA to Mediterranean coralligenous outcrops over 1000 km of the Italian coastline. Extensive field surveys were conducted to assess the actual condition of coralligenous assemblages at varying levels of human pressure. As pressure increased, a clear shift from bioconstructors to turf-dominated assemblages was found. The linear model originally assumed for CPIA did not fit the actual relationship between expected cumulative impact versus assemblage degradation. A log-log model, instead, best fitted the data and predicted a different map of cumulative impact in the study area able to appreciate the whole range of impact scenarios. Hence, the relative importance of different drivers in explaining the observed pattern of degradation was not aligned with weights from the expert opinion. Such findings stress the need for more incisive efforts to collect empirical evidence on ecosystem-specific responses to human pressure in order to refine CPIA predictions.
Biological Invasions | 2017
Giuseppe Guarnieri; Simonetta Fraschetti; Cesare Bogi; Bella S. Galil
Globally, the spread of non-indigenous species in marine ecosystems is a major ecological and socio-economical concern. The need for long-term assessment on a large scale is a pre-requisite for understanding the drivers associated with their establishment and expansion. Here, the patterns of invasions of subtidal soft-bottom assemblages of shelled molluscs have been quantified based on a unique dataset collected between 2005 and 2012 along the coast of Israel (SE Mediterranean Sea), a hotspot of bioinvasion. Overall, the number of non-indigenous species doubled between 2005 and 2012. Significant differences in terms of species richness and relative abundance were observed in space and time in both native and non-indigenous species. A combination of enduring disturbance regimes related to human activities and site-specific environmental conditions seem to have a critical role in promoting the observed patterns. Our results emphasize the value of long term broad-scale systematic surveys to the development of effective environmental policies for the control of bioinvasions.
Advances in Marine Biology | 2018
Gianmarco Ingrosso; Marco Abbiati; Fabio Badalamenti; Giorgio Bavestrello; Genuario Belmonte; Rita Cannas; Lisandro Benedetti-Cecchi; Marco Bertolino; Stanislao Bevilacqua; Carlo Nike Bianchi; Marzia Bo; Elisa Boscari; Frine Cardone; Riccardo Cattaneo-Vietti; Alessandro Cau; Carlo Cerrano; Renato Chemello; Giovanni Chimienti; Leonardo Congiu; Giuseppe Corriero; Federica Costantini; Francesco De Leo; Luigia Donnarumma; Annalisa Falace; Simonetta Fraschetti; Adriana Giangrande; Maria Flavia Gravina; Giuseppe Guarnieri; Francesco Mastrototaro; Marco Milazzo
Marine bioconstructions are biodiversity-rich, three-dimensional biogenic structures, regulating key ecological functions of benthic ecosystems worldwide. Tropical coral reefs are outstanding for their beauty, diversity and complexity, but analogous types of bioconstructions are also present in temperate seas. The main bioconstructions in the Mediterranean Sea are represented by coralligenous formations, vermetid reefs, deep-sea cold-water corals, Lithophyllum byssoides trottoirs, coral banks formed by the shallow-water corals Cladocora caespitosa or Astroides calycularis, and sabellariid or serpulid worm reefs. Bioconstructions change the morphological and chemicophysical features of primary substrates and create new habitats for a large variety of organisms, playing pivotal roles in ecosystem functioning. In spite of their importance, Mediterranean bioconstructions have not received the same attention that tropical coral reefs have, and the knowledge of their biology, ecology and distribution is still fragmentary. All existing data about the spatial distribution of Italian bioconstructions have been collected, together with information about their growth patterns, dynamics and connectivity. The degradation of these habitats as a consequence of anthropogenic pressures (pollution, organic enrichment, fishery, coastal development, direct physical disturbance), climate change and the spread of invasive species was also investigated. The study of bioconstructions requires a holistic approach leading to a better understanding of their ecology and the application of more insightful management and conservation measures at basin scale, within ecologically coherent units based on connectivity: the cells of ecosystem functioning.