Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Ianiri is active.

Publication


Featured researches published by Giuseppe Ianiri.


PLOS Genetics | 2014

Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation.

Guilhem Janbon; Kate L. Ormerod; Damien Paulet; Edmond J. Byrnes; Vikas Yadav; Gautam Chatterjee; Nandita Mullapudi; Chung Chau Hon; R. Blake Billmyre; François Brunel; Yong Sun Bahn; Weidong Chen; Yuan Chen; Eve W. L. Chow; Jean Yves Coppée; Anna Floyd-Averette; Claude Gaillardin; Kimberly J. Gerik; Jonathan M. Goldberg; Sara Gonzalez-Hilarion; Sharvari Gujja; Joyce L. Hamlin; Yen-Ping Hsueh; Giuseppe Ianiri; Steven J.M. Jones; Chinnappa D. Kodira; Lukasz Kozubowski; Woei Lam; Marco A. Marra; Larry D. Mesner

Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.


Applied Microbiology and Biotechnology | 2013

Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts

Erika P. Abbott; Giuseppe Ianiri; Raffaello Castoria; Alexander Idnurm

The red yeasts of the Pucciniomycotina have rarely been transformed with DNA molecules. Transformation methods were recently developed for a species of Sporobolomyces, based on selection using uracil auxotrophs and plasmids carrying the wild-type copies of the URA3 and URA5 genes. However, these plasmids were ineffective in the transformation of closely related species. Using the genome-sequenced strain of Rhodotorula graminis as a starting point, the URA3 and URA5 genes were cloned and tested for the transformation ability into different Pucciniomycotina species by biolistic and Agrobacterium-mediated transformations. Transformation success depended on the red yeast species and the origin of the URA3 or URA5 genes, which may be related to the high G + C DNA content found in several species. A new vector was generated to confer resistance to nourseothricin, using a native promoter from R. graminis and the naturally high G + C nourseothricin acetyltransferease gene. This provides a second selectable marker in these species. Targeted gene disruption was tested in Sporobolomyces sp. IAM 13481 using different lengths of homologous DNA with biolistic and Agrobacterium transformation methods. Both DNA delivery methods were effective for targeted replacement of a gene required for carotenoid pigment biosynthesis. The constructs also triggered transgene silencing. These developments open the way to identify and manipulate gene functions in a large group of basidiomycete fungi.


International Journal of Food Microbiology | 2012

Environmental factors affect the activity of biocontrol agents against ochratoxigenic Aspergillus carbonarius on wine grape.

F. De Curtis; D.V. de Felice; Giuseppe Ianiri; V. De Cicco; R. Castoria

The influence of temperature and relative humidity (RH) on the activity of three biocontrol agents-the yeast Metschnikowia pulcherrima LS16 and two strains of the yeast-like fungus Aureobasidium pullulans LS30 and AU34-2-against infection by A. carbonarius and ochratoxin A (OTA) accumulation in wine grape berries was investigated in lab-scale experiments. The presence of wounds on grape skin dramatically favored infection of berries by A. carbonarius strain A1102, since unwounded berries showed very low levels of infection at all conditions of RH and temperature tested. Artificially wounded berries pre-treated with the biocontrol agents were inoculated with the ochratoxigenic A. carbonarius strain A1102 and were incubated for 5 days at two levels of RH (60% and 100%) and three different temperatures (20, 25 and 30 °C). The three biocontrol agents were able to prevent infections at 60% RH and 20 °C. At 60% RH and 25 °C only strain AU34-2 achieved some protection on day 5, whereas at 30 °C a limited biocontrol efficacy was evident only up to day 2. At 100% RH, LS16, LS30 and AU34-2 showed effective protection of grape berries at 20 °C until the 5th day of incubation. The three biocontrol agents achieved significant protection at higher temperatures only until the 2nd day after the beginning of the experiment: all three strains at 25 °C, and only strain LS16 at 30 °C. After 5 days, the three biocontrol agents were able to significantly reduce the level of OTA in berries at all the conditions tested. This occurred even when protection from infection was not significant, except at 30 °C and 100% of RH for all the three strains, and at 25 °C and 100% of RH for strain LS16. The biocontrol agents displayed a higher rate of colonization on grape berries at 20 and 25 °C than at 30 °C. The higher value of RH (100%) appeared to increase the rate of colonization, in particular at 20 and 25 °C. Taken together, our results emphasize the significant influence of environmental factors on the effectiveness of biocontrol against A. carbonarius as well as on OTA contamination in wine grape berries, and the need for biocontrol agents that can cope with the environmental conditions that are conducive to attack by A. carbonarius.


Applied and Environmental Microbiology | 2013

Searching for Genes Responsible for Patulin Degradation in a Biocontrol Yeast Provides Insight into the Basis for Resistance to This Mycotoxin

Giuseppe Ianiri; Alexander Idnurm; Sandra A. I. Wright; R. Durán-Patrón; Luisa Mannina; Rosalia Ferracane; Alberto Ritieni; R. Castoria

ABSTRACT Patulin is a mycotoxin that contaminates pome fruits and derived products worldwide. Basidiomycete yeasts belonging to the subphylum Pucciniomycotina have been identified to have the ability to degrade this molecule efficiently and have been explored through different approaches to understand this degradation process. In this study, Sporobolomyces sp. strain IAM 13481 was found to be able to degrade patulin to form two different breakdown products, desoxypatulinic acid and (Z)-ascladiol. To gain insight into the genetic basis of tolerance and degradation of patulin, more than 3,000 transfer DNA (T-DNA) insertional mutants were generated in strain IAM 13481 and screened for the inability to degrade patulin using a bioassay based on the sensitivity of Escherichia coli to patulin. Thirteen mutants showing reduced growth in the presence of patulin were isolated and further characterized. Genes disrupted in patulin-sensitive mutants included homologs of Saccharomyces cerevisiae YCK2, PAC2, DAL5, and VPS8. The patulin-sensitive mutants also exhibited hypersensitivity to reactive oxygen species as well as genotoxic and cell wall-destabilizing agents, suggesting that the inactivated genes are essential for tolerating and overcoming the initial toxicity of patulin. These results support a model whereby patulin degradation occurs through a multistep process that includes an initial tolerance to patulin that utilizes processes common to other external stresses, followed by two separate pathways for degradation.


Mbio | 2015

Essential Gene Discovery in the Basidiomycete Cryptococcus neoformans for Antifungal Drug Target Prioritization

Giuseppe Ianiri; Alexander Idnurm

ABSTRACT Fungal diseases represent a major burden to health care globally. As with other pathogenic microbes, there is a limited number of agents suitable for use in treating fungal diseases, and resistance to these agents can develop rapidly. Cryptococcus neoformans is a basidiomycete fungus that causes cryptococcosis worldwide in both immunocompromised and healthy individuals. As a basidiomycete, it diverged from other common pathogenic or model ascomycete fungi more than 500 million years ago. Here, we report C. neoformans genes that are essential for viability as identified through forward and reverse genetic approaches, using an engineered diploid strain and genetic segregation after meiosis. The forward genetic approach generated random insertional mutants in the diploid strain, the induction of meiosis and sporulation, and selection for haploid cells with counterselection of the insertion event. More than 2,500 mutants were analyzed, and transfer DNA (T-DNA) insertions in several genes required for viability were identified. The genes include those encoding the thioredoxin reductase (Trr1), a ribosome assembly factor (Rsa4), an mRNA-capping component (Cet1), and others. For targeted gene replacement, the C. neoformans homologs of 35 genes required for viability in ascomycete fungi were disrupted, meiosis and sporulation were induced, and haploid progeny were evaluated for their ability to grow on selective media. Twenty-one (60%) were found to be required for viability in C. neoformans. These genes are involved in mitochondrial translation, ergosterol biosynthesis, and RNA-related functions. The heterozygous diploid mutants were evaluated for haploinsufficiency on a number of perturbing agents and drugs, revealing phenotypes due to the loss of one copy of an essential gene in C. neoformans. This study expands the knowledge of the essential genes in fungi using a basidiomycete as a model organism. Genes that have no mammalian homologs and are essential in both Cryptococcus and ascomycete human pathogens would be ideal for the development of antifungal drugs with broad-spectrum activity. IMPORTANCE Fungal infections are very common in humans but may be neglected due to misdiagnosis and inattention. Cryptococcus neoformans is a yeast that infects mainly immunocompromised people, causing high mortality rates in developing countries. The fungus infects the lungs, crosses the blood-brain barrier, and invades the cerebrospinal fluid, causing fatal meningitis. C. neoformans infections are treated with amphotericin B, flucytosine, and azoles, all developed decades ago. However, problems with antifungal agents highlight the urgent need for more-effective drugs to treat C. neoformans and other invasive fungal infections. These issues include the negative side effects of amphotericin B, the spontaneous resistance of C. neoformans to azoles, and the inefficacy of the echinocandin antifungals. In this study, we report the identification of C. neoformans essential genes as targets for the development of novel antifungals. Because of the level of evolutionary divergence between C. neoformans and the ascomycetes, a subset of these genes is likely essential in all fungi. Genes identified in this study represent an excellent starting point for the future development of new antifungals by pharmaceutical companies. Fungal infections are very common in humans but may be neglected due to misdiagnosis and inattention. Cryptococcus neoformans is a yeast that infects mainly immunocompromised people, causing high mortality rates in developing countries. The fungus infects the lungs, crosses the blood-brain barrier, and invades the cerebrospinal fluid, causing fatal meningitis. C. neoformans infections are treated with amphotericin B, flucytosine, and azoles, all developed decades ago. However, problems with antifungal agents highlight the urgent need for more-effective drugs to treat C. neoformans and other invasive fungal infections. These issues include the negative side effects of amphotericin B, the spontaneous resistance of C. neoformans to azoles, and the inefficacy of the echinocandin antifungals. In this study, we report the identification of C. neoformans essential genes as targets for the development of novel antifungals. Because of the level of evolutionary divergence between C. neoformans and the ascomycetes, a subset of these genes is likely essential in all fungi. Genes identified in this study represent an excellent starting point for the future development of new antifungals by pharmaceutical companies.


Fungal Genetics and Biology | 2011

Development of resources for the analysis of gene function in Pucciniomycotina red yeasts.

Giuseppe Ianiri; Sandra A. I. Wright; Raffaello Castoria; Alexander Idnurm

The Pucciniomycotina is an important subphylum of basidiomycete fungi but with limited tools to analyze gene functions. Transformation protocols were established for a Sporobolomyces species (strain IAM 13481), the first Pucciniomycotina species with a completed draft genome sequence, to enable assessment of gene function through phenotypic characterization of mutant strains. Transformation markers were the URA3 and URA5 genes that enable selection and counter-selection based on uracil auxotrophy and resistance to 5-fluoroorotic acid. The wild type copies of these genes were cloned into plasmids that were used for transformation of Sporobolomyces sp. by both biolistic and Agrobacterium-mediated approaches. These resources have been deposited to be available from the Fungal Genetics Stock Center. To show that these techniques could be used to elucidate gene functions, the LEU1 gene was targeted for specific homologous replacement, and also demonstrating that this gene is required for the biosynthesis of leucine in basidiomycete fungi. T-DNA insertional mutants were isolated and further characterized, revealing insertions in genes that encode the homologs of Chs7, Erg3, Kre6, Kex1, Pik1, Sad1, Ssu1 and Tlg1. Phenotypic analysis of these mutants reveals both conserved and divergent functions compared with other fungi. Some of these strains exhibit reduced resistance to detergents, the antifungal agent fluconazole or sodium sulfite, or lower recovery from heat stress. While there are current experimental limitations for Sporobolomyces sp. such as the lack of Mendelian genetics for conventional mating, these findings demonstrate the facile nature of at least one Pucciniomycotina species for genetic manipulation and the potential to develop these organisms into new models for understanding gene function and evolution in the fungi.


BMC Genomics | 2016

Transcriptomic responses of the basidiomycete yeast Sporobolomyces sp. to the mycotoxin patulin

Giuseppe Ianiri; Alexander Idnurm; Raffaello Castoria

BackgroundPatulin is a mycotoxin produced by Penicillium expansum, the causal agent of blue mold of stored pome fruits, and several other species of filamentous fungi. This mycotoxin has genotoxic, teratogenic and immunotoxic effects in mammals, and its presence in pome fruits and derived products represents a serious health hazard. Biocontrol agents in the Pucciniomycotina, such as the yeasts Sporobolomyces sp. strain IAM 13481 and Rhodosporidium kratochvilovae strain LS11, are able to resist patulin and degrade it into the less toxic compounds desoxypatulinic acid and ascladiol.ResultsIn this investigation we applied a transcriptomic approach based on RNAseq to annotate the genome of Sporobolomyces sp. IAM 13481 and then study the changes of gene expression in Sporobolomyces sp. exposed to patulin. Patulin treatment leads to ROS production and oxidative stress that result in the activation of stress response mechanisms controlled by transcription factors. Upregulated Sporobolomyces genes were those involved in oxidation-reduction and transport processes, suggesting the activation of defense mechanisms to resist patulin toxicity and expel the mycotoxin out of the cells. Other upregulated genes encoded proteins involved in metabolic processes such as those of the glutathione and thioredoxin systems, which are essential to restore the cellular redox homeostasis. Conversely, patulin treatment decreased the expression of genes involved in the processes of protein synthesis and modification, such as transcription, RNA processing, translation, protein phosphorylation and biosynthesis of amino acids. Also, genes encoding proteins involved in transport of ions, cell division and cell cycle were downregulated. This indicates a reduction of metabolic activity, probably due to the high energy requirement by the cells or metabolic arrest while recovering from the insult caused by patulin toxicity.ConclusionsComplex mechanisms are activated in a biocontrol yeast in response to patulin. The genes identified in this study can pave the way to develop i) a biodetoxification process of patulin in juices and ii) a biosensor for the rapid and cost-effective detection of this mycotoxin.


Genetics | 2017

Rewiring of Signaling Networks Modulating Thermotolerance in the Human Pathogen Cryptococcus neoformans

Dong Hoon Yang; Kwang Woo Jung; Soohyun Bang; Jang Won Lee; Min Hee Song; Anna Floyd-Averette; Richard A. Festa; Giuseppe Ianiri; Alexander Idnurm; Dennis J. Thiele; Joseph Heitman; Yong Sun Bahn

Thermotolerance is a crucial virulence attribute for human pathogens, including the fungus Cryptococcus neoformans that causes fatal meningitis in humans. Loss of the protein kinase Sch9 increases C. neoformans thermotolerance, but its regulatory mechanism has remained unknown. Here, we studied the Sch9-dependent and Sch9-independent signaling networks modulating C. neoformans thermotolerance by using genome-wide transcriptome analysis and reverse genetic approaches. During temperature upshift, genes encoding for molecular chaperones and heat shock proteins were upregulated, whereas those for translation, transcription, and sterol biosynthesis were highly suppressed. In this process, Sch9 regulated basal expression levels or induced/repressed expression levels of some temperature-responsive genes, including heat shock transcription factor (HSF1) and heat shock proteins (HSP104 and SSA1). Notably, we found that the HSF1 transcript abundance decreased but the Hsf1 protein became transiently phosphorylated during temperature upshift. Nevertheless, Hsf1 is essential for growth and its overexpression promoted C. neoformans thermotolerance. Transcriptome analysis using an HSF1 overexpressing strain revealed a dual role of Hsf1 in the oxidative stress response and thermotolerance. Chromatin immunoprecipitation demonstrated that Hsf1 binds to the step-type like heat shock element (HSE) of its target genes more efficiently than to the perfect- or gap-type HSE. This study provides insight into the thermotolerance of C. neoformans by elucidating the regulatory mechanisms of Sch9 and Hsf1 through the genome-scale identification of temperature-dependent genes.


Mbio | 2016

Gene Function Analysis in the Ubiquitous Human Commensal and Pathogen Malassezia Genus

Giuseppe Ianiri; Anna F. Averette; Joanne M. Kingsbury; Joseph Heitman; Alexander Idnurm

ABSTRACT The genus Malassezia includes 14 species that are found on the skin of humans and animals and are associated with a number of diseases. Recent genome sequencing projects have defined the gene content of all 14 species; however, to date, genetic manipulation has not been possible for any species within this genus. Here, we develop and then optimize molecular tools for the transformation of Malassezia furfur and Malassezia sympodialis using Agrobacterium tumefaciens delivery of transfer DNA (T-DNA) molecules. These T-DNAs can insert randomly into the genome. In the case of M. furfur, targeted gene replacements were also achieved via homologous recombination, enabling deletion of the ADE2 gene for purine biosynthesis and of the LAC2 gene predicted to be involved in melanin biosynthesis. Hence, the introduction of exogenous DNA and direct gene manipulation are feasible in Malassezia species. IMPORTANCE Species in the genus Malassezia are a defining component of the microbiome of the surface of mammals. They are also associated with a wide range of skin disease symptoms. Many species are difficult to culture in vitro, and although genome sequences are available for the species in this genus, it has not been possible to assess gene function to date. In this study, we pursued a series of possible transformation methods and identified one that allows the introduction of DNA into two species of Malassezia, including the ability to make targeted integrations into the genome such that genes can be deleted. This research opens a new direction in terms of now being able to analyze gene functions in this little understood genus. These tools will contribute to define the mechanisms that lead to the commensalism and pathogenicity in this group of obligate fungi that are predominant on the skin of mammals. Species in the genus Malassezia are a defining component of the microbiome of the surface of mammals. They are also associated with a wide range of skin disease symptoms. Many species are difficult to culture in vitro, and although genome sequences are available for the species in this genus, it has not been possible to assess gene function to date. In this study, we pursued a series of possible transformation methods and identified one that allows the introduction of DNA into two species of Malassezia, including the ability to make targeted integrations into the genome such that genes can be deleted. This research opens a new direction in terms of now being able to analyze gene functions in this little understood genus. These tools will contribute to define the mechanisms that lead to the commensalism and pathogenicity in this group of obligate fungi that are predominant on the skin of mammals.


Current Genetics | 2017

Isolation of conditional mutations in genes essential for viability of Cryptococcus neoformans

Giuseppe Ianiri; Kylie J. Boyce; Alexander Idnurm

Discovering the genes underlying fundamental processes that enable cells to live and reproduce is a technical challenge, because loss of gene function in mutants results in organisms that cannot survive. This study describes a forward genetics method to identify essential genes in fungi, based on the propensity for Agrobacterium tumefaciens to insert T-DNA molecules into the promoters or 5′ untranslated regions of genes and by placing a conditional promoter within the T-DNA. Insertions of the promoter of the GAL7 gene were made in the human pathogen Cryptococcus neoformans. Nine strains of 960 T-DNA insertional mutants screened grew on media containing galactose, but had impaired growth on media containing glucose, which suppresses expression from GAL7. T-DNA insertions were found in the homologs of IDI1, MRPL37, NOC3, NOP56, PRE3 and RPL17, all of which are essential in ascomycete yeasts Saccharomyces cerevisiae or Schizosaccharomyces pombe. Altering the carbon source in the medium provided a system to identify phenotypes in response to stress agents. The pre3 proteasome subunit mutant was further characterized. The T-DNA insertion and phenotype co-segregate in progeny from a cross, and the growth defect is complemented by the reintroduction of the wild type gene into the insertional mutant. A deletion allele was generated in a diploid strain, this heterozygous strain was sporulated, and analysis of the progeny provided additional genetic evidence that PRE3 is essential. The experimental design is applicable to other fungi and has other forward genetic applications such as to isolate over-expression suppressors or enhance the production of traits of interest.

Collaboration


Dive into the Giuseppe Ianiri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raffaello Castoria

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge