Giuseppe Macaluso
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giuseppe Macaluso.
European Journal of Environmental and Civil Engineering | 2015
Fabio Di Trapani; Giuseppe Macaluso; Liborio Cavaleri; Maurizio Papia
The issue of the influence of masonry infills within RC frames structures has been widely investigated in the last decades by several researchers. The large interest addressed to this topic depends on the actual observation that when in presence of seismic events, the response of framed structures is strongly conditioned by the interaction with the infill walls, which however are considered as non-structural elements and not included in the models. The influence of masonry infills role in structural response is so much relevant to affect not only the overall strength and the stiffness but it may also radically change the possible collapse mechanisms of the overall structural complex under the effect of strong ground motions. Infill panels may have a beneficial effect on the structural response, being able in some cases to supply the lack of resistance of structures to lateral actions, or an adverse contribution inducing unexpected and dangerous non-ductile collapse mechanisms. However, the studies carried out on this topic have demonstrated that, independently from the beneficial or adverse contribution of masonry infills on structural response, their presence cannot be neglected in structural modelling both in design and verification phases. The paper provides a large literature review regarding the modelling techniques developed in the last decades, going from refined nonlinear FE micromodel approaches to simplified equivalent single or multiple strut macromodels including also different technical code statements. The reliability of these approaches is discussed highlighting advantages and weakness points. Macromodelling approach is particularly pointed out since it constitutes the most attractive technique to perform complex nonlinear analyses (static and dynamic). A state of the art of the main issues regarding equivalent strut identification (stiffness, constitutive law and cyclic behaviour) across scientific literature is provided describing in detail noteworthy aspects of some approaches.
Bulletin of Earthquake Engineering | 2015
Giuseppe Campione; Liborio Cavaleri; Giuseppe Macaluso; Giuseppina Amato; F. Di Trapani
The influence of masonry infills on the in-plane behaviour of RC framed structures is a central topic in the seismic evaluation and retrofitting of existing buildings. Many models in the literature use an equivalent strut member in order to represent the infill but, among the parameters influencing the equivalent strut behaviour, the effect of vertical loads acting on the frames is recognized but not quantified. Nevertheless a vertical load causes a non-negligible variation in the in-plane behaviour of infilled frames by influencing the effective volume of the infill. This results in a change in the stiffness and strength of the system. This paper presents an equivalent diagonal pin-jointed strut model taking into account the stiffening effect of vertical loads on the infill in the initial state. The in-plane stiffness of a range of infilled frames was evaluated using a finite element model of the frame-infill system and the cross-section of the strut equivalent to the infill was obtained for different levels of vertical loading by imposing the equivalence between the frame containing the infill and the frame containing the diagonal strut. In this way a law for identifying the equivalent strut width depending on the geometrical and mechanical characteristics of the infilled frame was generalized to consider the influence of vertical loads for use in the practical applications. The strategy presented, limited to the initial stiffness of infilled frames, is preparatory to the definition of complete non-linear cyclic laws for the equivalent strut.
The Open Construction and Building Technology Journal | 2016
Panagiotis G. Asteris; Liborio Cavaleri; Fabio Di Trapani; Giuseppe Macaluso; Gaia Scaduto
The opportunity to locate and quantify the major criticalities associated to natural catastrophic events on a territory allows to plan adequate strategies and interventions by civil protection bodies involved in local and international emergencies. Seismic risk depends, most of all, on the vulnerability of buildings belonging to the urban areas. For this reason, the definition, by a deep analysis of the territory, of instruments identifying and locating vulnerability, largely favours the activities of institutions appointed to safeguard the safety of citizens. This paper proposes a procedure for the definition of vulnerability maps in terms of vulnerability indexes and critical peak ground accelerations for mid-small urban centres belonging to Mediterranean areas. The procedure, tested on the city centre of the Island of Lampedusa, is based on a preliminary historical investigation of the urban area and of the main formal and technological features of buildings involved. Moreover, the vulnerability of the constructions is evaluated by fast assessment methods (filling of evaluation forms). The vulnerability model, allowing the definition of the fragility curves, is calibrated on the basis of the results of an identification process of prototype buildings, selected to be adequately representative. Their characterizations have been provided using the results of an experimental dynamic investigation to develop high representative numerical model. Critical PGA values have been determined by pushover analyses. The results presented provided an unambiguous representation of the major criticalities with respect to seismic vulnerability and risk, of the city centre of the island, being a suitable tool for planning and handling of emergencies.
The Open Construction and Building Technology Journal | 2016
Giuseppe Campione; Liborio Cavaleri; M. F. Ferrotto; Giuseppe Macaluso; Maurizio Papia
The improvement and the capacity assessment of existing buildings has become the main topic of the last years so that different studies can be found devoted to damaged structures or structures not having a capacity compatible with the safety levels of the actual codes. Reinforced concrete framed structure buildings represent a conspicuous rate of the existing constructions so many efforts are addressed to them. Referring to this type of buildings, a good prediction of strength and deformation capacity requests models able to interpret the constitutive law of concrete confined by internal reinforcement or by eventual external reinforcement applied to increase capacity of cross-sections. Considering that one of the techniques much diffused for the improvement of the capacity of reinforced concrete members is the steel jacketing by the combined system of angles and battens, models able to predict the real contribution of this kind of intervention are desirable. In this connection the paper discusses the different confined concrete models available in the literature, analyzing all the characteristics and comparing the σ-ε constitutive laws for different type of RC cross sections. Also, an experimental campaign aimed to the validation of the above models is presented. Through the paper, the results of tests on columns reinforced with steel jacketing are described and the reliability of some costitutive laws for concrete confined by steel jacketing is examined.
Advances in Civil Engineering | 2018
Marinella Fossetti; Francesco Basone; Giuseppe D’Arenzo; Giuseppe Macaluso; Alfio Francesco Siciliano
In the last few decades, the upgrading of existing reinforced concrete columns with the use of FRP jackets has met with increasing interest for its effectiveness and ease of application. The use of these kinds of jackets ensures an improvement of the affected column in terms of strength and ductility; however, the prediction of behavior of columns wrapped with FRP jackets is still an open question because of the many parameters that influence the effectiveness of the upgrading technique, and several semiempirical models are proposed. Because these models are often only applicable to specific cases, in this paper, a generalized criterion for the determination of the increase in strength, in ductility, and in dissipated energy for varying corner radius ratios of the cross section and fiber volumetric ratios is shown. Numerical results using a finite element analysis, calibrated on the basis of experimental data available in the literature, are carried out to calibrate the new analytical models. A comparison with some available models confirms the reliability of the proposed procedure.
The Open Construction and Building Technology Journal | 2014
Liborio Cavaleri; Fabio Di Trapani; Giuseppe Macaluso; Gaia Scaduto
A statistical non linearization method is used to approximate systems modeled by the Bouc differential equa- tion and excited by a Gaussian white noise external load. To this aim restricted potential models (RPM) are used, which are suitable for an extended number of nonlinear problems as have been proved several times. Since the solution of RPM is known by the probabilistic point of view, all statistical characteristics can be derived at once with advantages by the computational point of view. Hence, this paper discusses the possibility to determine sets of parameters characterizing po- tential models that are valid for describing a hysteretic behavior. In this way the characterization of the hysteretic behavior of a system can be performed with computational efforts lower than that normally requested. Keyword: Bouc model, energy dissipation, equivalent non linearization, hysteretic behavior, response statistics, restricted potential models.
Materials and Structures | 2014
Liborio Cavaleri; Maurizio Papia; Giuseppe Macaluso; F. Di Trapani; Piero Colajanni
Construction and Building Materials | 2014
Piero Colajanni; Marinella Fossetti; Giuseppe Macaluso
Engineering Structures | 2016
Giuseppe Campione; Liborio Cavaleri; Fabio Di Trapani; Giuseppe Macaluso; Gaia Scaduto
Materials and Structures | 2017
Marinella Fossetti; Gioacchino Alotta; Francesco Basone; Giuseppe Macaluso