Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Maugeri is active.

Publication


Featured researches published by Giuseppe Maugeri.


Neuroscience Letters | 1985

Influences of pyramidal tract on the subthalamic nucleus in the cat.

Rosario Giuffrida; Guido Li Volsi; Giuseppe Maugeri; Vincenzo Perciavalle

In adult cats, with mesencephalic decerebration sparing the cerebral peduncles and ablation of the sensorimotor cortex, changes in firing of single cells of subthalamic nucleus (STN) were analyzed upon stimulation of ipsilateral medullary pyramidal tract (PT). Twenty-two out of 44 of the STN cells exhibited, following PT stimulation, discharge changes that in the greatest part of cases (91%) were excitatory in nature. Excitations, always followed by inhibitory rebound, appeared with latency values compatible with a monosynaptic linkage.


Experimental Brain Research | 1990

Effects of 5-hydroxytryptamine on the firing rates of neurons of the lateral vestibular nucleus in the rat

F. Licata; G. Li Volsi; Giuseppe Maugeri; F. Santangelo

Summary5-hydroxytryptamine (5-HT) was delivered microiontophoretically (20–80 nA) to cells of the lateral vestibular nucleus of anaesthetized rats to test its influence on the spontaneous activity of single neurons. 5-HT increased the rate of firing of 94% of the units tested. The enhancement persisted for up to 700 s after the end of the 5-HT ejection and the maximum magnitude of the excitation (10–3400%) showed a hyperbolic correlation (ϱ=0.86) with background firing. In 43% of units the enhancement was preceded by a short-lasting (less than 105 s) depression of the neuronal firing rate, the magnitude of which was unrelated to the background mean firing rate. Both components of the 5-HT response were dose-dependent. Only the excitatory responses were antagonized by metergoline, methysergide and ketanserin. The putative 5-HT agonist, 5-methoxy-N,N-dimethyltryptamine, applied microiontophoretically, depressed the background firing rate and was not antagonized by methysergide. These results demonstrate that 5-HT modifies the responsiveness of vestibular neurons and suggest that at least two mechanisms and maybe two types of receptors are activated by 5-HT in this nucleus.


Neuroscience | 1993

Serotonin-evoked modifications of the neuronal firing rate in the superior vestibular nucleus: A microiontophoretic study in the rat

F. Licata; G. Li Volsi; Giuseppe Maugeri; Lucia Ciranna; F. Santangelo

Microiontophoretic ejection (10-100 nA) of serotonin (5-hydroxytryptamine) into the superior vestibular nucleus induced modifications of the mean firing rate in 87% of the neurons examined. The responses to 5-hydroxytryptamine application were excitatory in 48% of the cells, inhibitory in 29%, and biphasic (inhibitory/excitatory) in the remaining 10%. The excited neurons were scattered throughout the nucleus; the units inhibited or characterized by biphasic responses were distinctly more numerous in the ventrolateral sector of the nucleus. The magnitude of both excitatory and inhibitory effects was dose-dependent. The excitatory responses to 5-hydroxytryptamine were blocked or greatly reduced by two 5-hydroxytryptamine antagonists, methysergide and ketanserin, or even reversed in many cases. Inhibitory responses were enhanced by simultaneous application of 5-hydroxytryptamine antagonists in half of the units studied. In the remaining units, ketanserin left the response unmodified, whereas methysergide reduced but never quite blocked it. The application of 5-methoxy-N,N- dimethyltryptamine, a 5-hydroxytryptamine agonist more effective on 5-hydroxytryptamine1 than on 5-hydroxytryptamine2 receptors, and of 8-hydroxy-2(di-n-propyl-amino) tetralin, a 5-hydroxytryptamine1A-specific agonist, induced a decrease in the firing rate which was unaffected by methysergide. These results support the hypothesis that 5-hydroxytryptamine exerts various functions throughout the superior vestibular nucleus by various receptors and that the inhibitory action is limited to an area of it.(ABSTRACT TRUNCATED AT 250 WORDS)


Neuroscience Letters | 1993

Excitatory and inhibitory effects of 5-hydroxytryptamine on the firing rate of medial vestibular nucleus neurons in the rat

F. Licata; Guido Li Volsi; Giuseppe Maugeri; F. Santangelo

The effects of microiontophoretic application of 5-hydroxytryptamine (5-HT) on the neuronal firing rate of the medial vestibular nucleus (MVN) were studied in anaesthetized rats. Ninety-three % of the units modified their background activity following 5-HT iontophoresis, enhancements of the firing rate being recorded in 42%, decreases in 38% and biphasic effects in 13%. 5-HT antagonists methysergide and ketanserin blocked the excitatory but not the inhibitory responses to 5-HT. These latter were, however, mimicked by 5-HT agonists 5-methoxy-N,N-dimethyltryptamine (5MeODMT) and 8-hydroxy-2(di-n-propyl-amino)tetralin (8-OH-DPAT). It is concluded that 5-HT can variously influence the background activity of MVN neurons and that 5-HT2 and probably 5-HT1A receptors are involved in the responses.


Neuroscience | 1993

Effects of noradrenaline on the firing rate of vestibular neurons

F. Licata; G. Li Volsi; Giuseppe Maugeri; Lucia Ciranna; F. Santangelo

The effects of microiontophoretic noradrenaline on the firing rate of neurons located in the vestibular complex have been studied in anaesthetized rats. Eighty-five per cent of the neurons tested in all the vestibular nuclei modified their background firing rate upon noradrenaline application, generally by reducing it (86% of them). In few cases inhibitions were followed by a rebound. Responses were dose-dependent. No significant difference was found between vestibular neurons projecting to the spinal cord and those delivering their fibres to the oculomotor complex. Phentolamine, an alpha-adrenergic antagonist, blocked the noradrenaline-evoked inhibitions, whereas beta-adrenergic antagonist timolol was ineffective or enhanced them. Furthermore, responses were blocked by yohimbine, an alpha 2-adrenergic antagonist, and mimicked by clonidine, an alpha 2-adrenergic agonist, in the majority of neurons. In few cases prazosin, an alpha 1-adrenergic antagonist, was able to antagonize weak inhibitions and phenylephrine, an alpha 1-adrenergic agonist, to evoke an inhibitory effect blocked by prazosin. Isoproterenol, a beta-adrenergic agonist was totally ineffective on the neuronal firing rate. It is concluded that noradrenaline can modify the level of neuronal activity in the vestibular complex by acting mostly, but not exclusively, through alpha 2-adrenergic receptors. An influence of noradrenergic systems on the vestibular function by a direct action of noradrenaline inside the vestibular nuclei is proposed.


Experimental Brain Research | 1998

5-Hydroxytryptamine modifies neuronal responses to glutamate in the red nucleus of the rat

F. Licata; Guido Li Volsi; Lucia Ciranna; Giuseppe Maugeri; F. Santangelo

Abstract The effects of 5-hydroxytryptamine (5-HT) on the responses of red nucleus (RN) neurones to glutamate (glu) and its agonists were studied using a microiontophoretic technique in anaesthetised rats. Extracellular unitary recordings of RN neuronal activity showed that 5-HT application induced a significant and reversible depression of glu-evoked excitations in 85% of the RN units tested. This effect was independent of the action of the amine on background firing, which appeared enhanced in the majority of cases but was either depressed or uninfluenced in other cases. Microiontophoretic 5-HT also depressed the excitatory responses evoked in RN neurones by electrical stimulation of sensorimotor cortex. Methysergide application, which prevented the enhancing effects of 5-HT on the background firing, was scarcely effective in antagonising the depression of glu responses. In contrast, the serotonergic effects on the glu responses were reduced by the iontophoretically applied antagonist of 5-HT1A receptors, NAN-190. Microiontophoretic 5-HT was also able to influence the neuronal responses evoked by glu agonists quisqualate (quis) and N-methyl-d-aspartate (NMDA), acting on non-NMDA and NMDA receptors respectively. In fact 5-HT depressed quis-evoked excitations and induced mixed effects on NMDA responses, which were reduced in 45%, enhanced in 34% and unmodified in 21% of the units tested. These results suggest that 5-HT is able to modulate the motor glutamatergic input to RN by acting mostly on non-NMDA receptors. The modulation of non-NMDA and NMDA receptors by 5-HT in the RN appears significant and its functional meaning is discussed.


Neuroscience | 1990

Effects of motor cortex and single muscle stimulation on neurons of the lateral vestibular nucleus in the rat

F. Licata; G. Li Volsi; Giuseppe Maugeri; F. Santangelo

The neuronal responses to stimulation of motor cortical sites and of forelimb single muscles were studied in the lateral vestibular nucleus of anaesthetized rats. Of the 228 neurons tested for response to stimulation of contralateral motor cortex, 63% responded to cortical sites controlling extensor muscles and 30% to those controlling flexors. The corresponding figures for responders to ipsilateral stimulation were 34 and 21%. Vestibulospinal units responded to cortical sites controlling extensor and flexor muscles whereas the remaining lateral vestibular nucleus neurons, very reactive to cortical sites controlling extensor muscles, responded little to contralateral and not at all to ipsilateral cortical sites controlling flexor muscles. The effects evoked by contralateral cortical sites controlling extensors varied, those induced by cortical sites controlling flexors were inhibitory in 77% of cases. The responses to ipsilateral motor cortex stimulation differed not so much by cortical sites controlling extensor or flexor muscles as by whether the neuron was in the dorsal or ventral zone of the lateral vestibular nucleus: mixed in the former, all inhibitory in the latter. Of the lateral vestibular nucleus units tested for response to stimulation of ipsilateral or contralateral forelimb distal muscles, only 11% responded. All the vestibulospinal units responsive to muscle stimulation lay in the dorsal zone of the nucleus. The remainder, dorsal or ventral, were not responsive to contralateral muscles. Single lateral vestibular nucleus cells influenced both by ipsilateral muscle and by contralateral motor cortex made up 24% of the pool, vestibulospinal and non-vestibulospinal. They fell into three groups: responsive to one or both structures but responding more strongly to combined stimulation; responsive to each of the two structures but showing a response to combined stimulation not significantly different from that evoked by the cortex alone; responsive only to combined stimulation. The lateral vestibular nucleus units included in these three groups accounted for 29% of those tested for response to extensor muscles and cortical sites controlling extensors and 15% of those tested for response to flexor muscles and cortical sites controlling flexors. Twenty-five per cent of the vestibulospinal neurons responded both to contralateral muscles and to ipsilateral motor cortex stimulation but none of the non-vestibulospinal neurons responded to both. All the responders to both were in the dorsal zone of the lateral vestibular nucleus and responded to extensor stimuli, always in the same way. These results indicate that motor cortex output exerts a major influence on lateral vestibular nucleus discharges, while the muscle afferents have a modulatory influence on the lateral vestibular nucleus responses to cortex.(ABSTRACT TRUNCATED AT 400 WORDS)


Neuroscience Letters | 1987

Integration of cortical and peripheral information in the lateral vestibular nucleus in the cat

F. Licata; Guido Li Volsi; Giuseppe Maugeri; F. Santangelo

Neuronal discharges in the lateral vestibular nucleus (LVN) of the cat were studied during stimulation of a forelimb muscle and of a site in the contralateral motor cortex (area 4) capable of activating the same muscle. About one third of the LVN units were reactive to both stimulations or at least responded to one (cortex or muscle) but modified the response pattern when the other was stimulated also. The patterns evoked by a muscle were mostly enhanced on simultaneous stimulation of the cortical zone controlling the same muscle and vice versa. Only in the dorsal division the excitatory responses to muscle stimulation were depressed by simultaneous cortical stimulation. Some functional implications are proposed.


Experimental Brain Research | 1995

Neuronal responses to 5-hydroxytryptamine in the red nucleus of rats

F. Licata; Guido Li Volsi; Giuseppe Maugeri; F. Santangelo

The effects of microiontophoretic 5-hydroxytryptamine (5-HT) on the firing rate of red nucleus (RN) neurons were studied in urethane-anesthetized rats. The background discharge rate of almost all the neurons tested (97%) was modified by 5-HT, and generally increased (89%). Responses were dose dependent. Twenty-three percent of the excitatory responses were preceded by a short inhibitory phase. No significant difference in the effect of 5-HT was found between those RN neurons that project to the spinal cord and those that do not. The excitatory responses to 5-HT were blocked or greatly reduced by the 5-HT antagonists methysergide and ketanserin, and were even reversed in some cases. The 5-HT2/5-HT1A antagonist spiperone, in small doses, also blocked the transient inhibitory phases in addition to the excitatory effects. In RN neurons exhibiting a short-lasting inhibition in the response to 5-HT, the 5-HT1A agonist 8-hydroxy-2(di-n-propyl-amino)tetralin (8-OH-DPAT) induced inhibitory effects. These results support the hypothesis that 5-HT exerts control throughout the RN, mostly by acting on 5-HT2 receptors. Furthermore, an influence of this amine on the electrical activity of small groups of RN neurons by 5-HT1A receptors, and eventually by different mechanisms, appears probable. The functional significance of serotoninergic control of RN neuronal activity is discussed.


Plant Ecology | 1988

Successional pathways of Mediterranean evergreen vegetation on Sicily

Emilia Poli Marchese; Lidia Di Benedetto; Giuseppe Maugeri

The Mediterranean evergreen vegetation of Sicily, comprised in the belt of the Quercetea ilicis, occupies a large part of the island. Human intervention (cutting, fire, pasture) has brought about a degradation of the natural vegetation. This study is based on our phytosociological research of the Quercetea ilicis belt on Sicily.

Collaboration


Dive into the Giuseppe Maugeri's collaboration.

Top Co-Authors

Avatar

F. Licata

University of Catania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge