Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Opocher is active.

Publication


Featured researches published by Giuseppe Opocher.


Nature Genetics | 2011

Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma

Iñaki Comino-Méndez; Francisco Javier Gracia-Aznárez; Francesca Schiavi; Iñigo Landa; Luis J. Leandro-García; Rocío Letón; Emiliano Honrado; Rocío Ramos-Medina; Daniela Caronia; Guillermo Pita; Álvaro Gómez-Graña; Aguirre A. de Cubas; Lucía Inglada-Pérez; Agnieszka Maliszewska; Elisa Taschin; Sara Bobisse; Giuseppe Pica; Paola Loli; Rafael Hernández-Lavado; José A. Díaz; Mercedes Gómez-Morales; Anna González-Neira; Giovanna Roncador; Cristina Rodríguez-Antona; Javier Benitez; Massimo Mannelli; Giuseppe Opocher; Mercedes Robledo; Alberto Cascón

Hereditary pheochromocytoma (PCC) is often caused by germline mutations in one of nine susceptibility genes described to date, but there are familial cases without mutations in these known genes. We sequenced the exomes of three unrelated individuals with hereditary PCC (cases) and identified mutations in MAX, the MYC associated factor X gene. Absence of MAX protein in the tumors and loss of heterozygosity caused by uniparental disomy supported the involvement of MAX alterations in the disease. A follow-up study of a selected series of 59 cases with PCC identified five additional MAX mutations and suggested an association with malignant outcome and preferential paternal transmission of MAX mutations. The involvement of the MYC-MAX-MXD1 network in the development and progression of neural crest cell tumors is further supported by the lack of functional MAX in rat PCC (PC12) cells and by the amplification of MYCN in neuroblastoma and suggests that loss of MAX function is correlated with metastatic potential.


Nature Genetics | 2010

Germline mutations in TMEM127 confer susceptibility to pheochromocytoma

Yuejuan Qin; Li Qin Yao; Elizabeth E. King; Kalyan Buddavarapu; Romina Lenci; E. Sandra Chocron; James D. Lechleiter; Meghan Sass; Neil Aronin; Francesca Schiavi; Francesca Boaretto; Giuseppe Opocher; Rodrigo A. Toledo; Sergio P. A. Toledo; Charles D. Stiles; Ricardo C T Aguiar; Patricia L M Dahia

Pheochromocytomas, which are catecholamine-secreting tumors of neural crest origin, are frequently hereditary. However, the molecular basis of the majority of these tumors is unknown. We identified the transmembrane-encoding gene TMEM127 on chromosome 2q11 as a new pheochromocytoma susceptibility gene. In a cohort of 103 samples, we detected truncating germline TMEM127 mutations in approximately 30% of familial tumors and about 3% of sporadic-appearing pheochromocytomas without a known genetic cause. The wild-type allele was consistently deleted in tumor DNA, suggesting a classic mechanism of tumor suppressor gene inactivation. Pheochromocytomas with mutations in TMEM127 are transcriptionally related to tumors bearing NF1 mutations and, similarly, show hyperphosphorylation of mammalian target of rapamycin (mTOR) effector proteins. Accordingly, in vitro gain-of-function and loss-of-function analyses indicate that TMEM127 is a negative regulator of mTOR. TMEM127 dynamically associates with the endomembrane system and colocalizes with perinuclear (activated) mTOR, suggesting a subcompartmental-specific effect. Our studies identify TMEM127 as a tumor suppressor gene and validate the power of hereditary tumors to elucidate cancer pathogenesis.


The Journal of Clinical Endocrinology and Metabolism | 2009

Clinically Guided Genetic Screening in a Large Cohort of Italian Patients with Pheochromocytomas and/or Functional or Nonfunctional Paragangliomas

Massimo Mannelli; Maurizio Castellano; Francesca Schiavi; Sebastiano Filetti; Mara Giacchè; Luigi Mori; Viviana Pignataro; G. P. Bernini; Valentino Giachè; Alessandra Bacca; Bernadette Biondi; Giovanni Corona; Giuseppe Di Trapani; Erika Grossrubatscher; Giuseppe Reimondo; Giorgio Arnaldi; Gilberta Giacchetti; Franco Veglio; Paola Loli; Annamaria Colao; Maria Rosaria Ambrosio; Massimo Terzolo; Claudio Letizia; Tonino Ercolino; Giuseppe Opocher

PURPOSE The aim of the study was to define the frequency of hereditary forms and the genotype/phenotype correlations in a large cohort of Italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. DESIGN We examined 501 consecutive patients with pheochromocytomas and/or paragangliomas (secreting or nonsecreting). Complete medical and family histories, as well as the results of clinical, laboratory, and imaging studies, were recorded in a database. Patients were divided into different groups according to their family history, the presence of lesions outside adrenals/paraganglia considered syndromic for VHL disease, MEN2, and NF1, and the number and types of pheochromocytomas and/or paragangliomas. Germ-line mutations in known susceptibility genes were investigated by gene sequencing (VHL, RET, SDHB, SDHC, SDHD) or diagnosed according to phenotype (NF1). In 160 patients younger than 50 yr with a wild-type profile, multiplex ligation-dependent probe amplification assays were performed to detect genomic rearrangements. RESULTS Germline mutations were detected in 32.1% of cases, but frequencies varied widely depending on the classification criteria and ranged from 100% in patients with associated syndromic lesions to 11.6% in patients with a single tumor and a negative family history. The types and number of pheochromocytomas/paragangliomas as well as age at presentation and malignancy suggest which gene should be screened first. Genomic rearrangements were found in two of 160 patients (1.2%). CONCLUSIONS The frequency of the hereditary forms of pheochromocytoma/paraganglioma varies depending on the family history and the clinical presentation. A positive family history and an accurate clinical evaluation of patients are strong indicators of which genes should be screened first.


The Journal of Clinical Endocrinology and Metabolism | 2011

Urine Steroid Metabolomics as a Biomarker Tool for Detecting Malignancy in Adrenal Tumors

Wiebke Arlt; Michael Biehl; Angela E. Taylor; Stefanie Hahner; Rossella Libé; Beverly Hughes; Petra Schneider; David J. Smith; Han Stiekema; Nils Krone; Emilio Porfiri; Giuseppe Opocher; Jérôme Bertherat; Franco Mantero; Bruno Allolio; Massimo Terzolo; Peter Nightingale; Cedric Shackleton; Xavier Bertagna; Martin Fassnacht; Paul M. Stewart

Context: Adrenal tumors have a prevalence of around 2% in the general population. Adrenocortical carcinoma (ACC) is rare but accounts for 2–11% of incidentally discovered adrenal masses. Differentiating ACC from adrenocortical adenoma (ACA) represents a diagnostic challenge in patients with adrenal incidentalomas, with tumor size, imaging, and even histology all providing unsatisfactory predictive values. Objective: Here we developed a novel steroid metabolomic approach, mass spectrometry-based steroid profiling followed by machine learning analysis, and examined its diagnostic value for the detection of adrenal malignancy. Design: Quantification of 32 distinct adrenal derived steroids was carried out by gas chromatography/mass spectrometry in 24-h urine samples from 102 ACA patients (age range 19–84 yr) and 45 ACC patients (20–80 yr). Underlying diagnosis was ascertained by histology and metastasis in ACC and by clinical follow-up [median duration 52 (range 26–201) months] without evidence of metastasis in ACA. Steroid excretion data were subjected to generalized matrix learning vector quantization (GMLVQ) to identify the most discriminative steroids. Results: Steroid profiling revealed a pattern of predominantly immature, early-stage steroidogenesis in ACC. GMLVQ analysis identified a subset of nine steroids that performed best in differentiating ACA from ACC. Receiver-operating characteristics analysis of GMLVQ results demonstrated sensitivity = specificity = 90% (area under the curve = 0.97) employing all 32 steroids and sensitivity = specificity = 88% (area under the curve = 0.96) when using only the nine most differentiating markers. Conclusions: Urine steroid metabolomics is a novel, highly sensitive, and specific biomarker tool for discriminating benign from malignant adrenal tumors, with obvious promise for the diagnostic work-up of patients with adrenal incidentalomas.


Clinical Cancer Research | 2012

MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma.

Nelly Burnichon; Alberto Cascón; Francesca Schiavi; NicolePaes Morales; Iñaki Comino-Méndez; Nasséra Abermil; Lucía Inglada-Pérez; Aguirre A. de Cubas; Laurence Amar; Marta Barontini; Sandra Bernaldo De Quiroś; Jérôome Bertherat; Yves Jean Bignon; Marinus J. Blok; Sara Bobisse; Salud Borrego; Maurizio Castellano; Philippe Chanson; María Dolores Chiara; Eleonora P. M. Corssmit; Mara Giacchè; Ronald R. de Krijger; Tonino Ercolino; Xavier Girerd; Encarna B. Gomez-Garcia; Álvaro Gómez-Graña; Isabelle Guilhem; Frederik J. Hes; Emiliano Honrado; Esther Korpershoek

Purpose: Pheochromocytomas (PCC) and paragangliomas (PGL) are genetically heterogeneous neural crest–derived neoplasms. Recently we identified germline mutations in a new tumor suppressor susceptibility gene, MAX (MYC-associated factor X), which predisposes carriers to PCC. How MAX mutations contribute to PCC/PGL and associated phenotypes remain unclear. This study aimed to examine the prevalence and associated phenotypic features of germline and somatic MAX mutations in PCC/PGL. Design: We sequenced MAX in 1,694 patients with PCC or PGL (without mutations in other major susceptibility genes) from 17 independent referral centers. We screened for large deletions/duplications in 1,535 patients using a multiplex PCR-based method. Somatic mutations were searched for in tumors from an additional 245 patients. The frequency and type of MAX mutation was assessed overall and by clinical characteristics. Results: Sixteen MAX pathogenic mutations were identified in 23 index patients. All had adrenal tumors, including 13 bilateral or multiple PCCs within the same gland (P < 0.001), 15.8% developed additional tumors at thoracoabdominal sites, and 37% had familial antecedents. Age at diagnosis was lower (P = 0.001) in MAX mutation carriers compared with nonmutated cases. Two patients (10.5%) developed metastatic disease. A mutation affecting MAX was found in five tumors, four of them confirmed as somatic (1.65%). MAX tumors were characterized by substantial increases in normetanephrine, associated with normal or minor increases in metanephrine. Conclusions: Germline mutations in MAX are responsible for 1.12% of PCC/PGL in patients without evidence of other known mutations and should be considered in the genetic work-up of these patients. Clin Cancer Res; 18(10); 2828–37. ©2012 AACR.


Annals of Surgery | 2009

Surgical Versus Conservative Management for Subclinical Cushing Syndrome in Adrenal Incidentalomas: A Prospective Randomized Study

Antonio Toniato; Isabella Merante-Boschin; Giuseppe Opocher; Maria Rosa Pelizzo; Francesca Schiavi; Enzo Ballotta

Objective:To compare the clinical outcome of patients with subclinical Cushing syndrome (SCS) due to an adrenal incidentaloma (the autonomous hypersecretion of a small amount of cortisol, which is not enough to cause clinically-evident disease) who underwent surgery or were managed conservatively. Summary Background Data:The most appropriate management of SCS patients is controversial, either adrenalectomy or close follow-up being recommended for their treatment. Methods:Over a 15-year period, 45 SCS patients were randomly selected to undergo surgery (n = 23) or conservative management (n = 22). All surgical procedures were laparoscopic adrenalectomies performed by the same surgeon. All patients were followed up (mean, 7.7 years; range, 2–17 years) clinically by 2 experienced endocrinologists 6 and 12 months after surgery and then yearly, or yearly after joining the trial, particularly monitoring diabetes mellitus (DM), arterial hypertension, hyperlipidemia, obesity, and osteoporosis. The study end point was the clinical outcome of SCS patients who underwent adrenalectomy versus those managed conservatively. Results:All 23 patients in the surgical arm had elective surgery. Another 3 patients randomly assigned to conservative management crossed over to the surgical group due to an increasing adrenal mass >3.5 cm. In the surgical group, DM normalized or improved in 62.5% of patients (5 of 8), hypertension in 67% (12 of 18), hyperlipidemia in 37.5% (3 of 8), and obesity in 50% (3 of 6). No changes in bone parameters were seen after surgery in SCS patients with osteoporosis. On the other hand, some worsening of DM, hypertension, and hyperlipidemia was noted in conservatively-managed patients. Conclusions:Based on the results of this study, laparoscopic adrenalectomy performed by skilled surgeons appears more beneficial than conservative management for SCS patients complying with our selection criteria. This trial is registered with Australian Clinical Trials Registry number, ANZCTR12608000567325.


Cancer Research | 2009

Clinical Predictors for Germline Mutations in Head and Neck Paraganglioma Patients: Cost Reduction Strategy in Genetic Diagnostic Process as Fall-Out

Hartmut P. H. Neumann; Carsten Christof Boedeker; Lisa Rybicki; Mercedes Robledo; Mario Hermsen; Francesca Schiavi; Maurizio Falcioni; Pingling Kwok; Catherine Bauters; Karen Lampe; Markus Fischer; Emily Edelman; Diana E. Benn; Bruce G. Robinson; Stefanie Wiegand; Gerd Rasp; Boris A. Stuck; Michael M. Hoffmann; Maren Sullivan; Maria A. Sevilla; Marjan M. Weiss; Mariola Pęczkowska; Agata Kubaszek; Pascal Pigny; Robyn L. Ward; Diana L. Learoyd; Michael S Croxson; Dmitry Zabolotny; Svetlana Yaremchuk; Wolfgang Draf

Multiple genes and their variants that lend susceptibility to many diseases will play a major role in clinical routine. Genetics-based cost reduction strategies in diagnostic processes are important in the setting of multiple susceptibility genes for a single disease. Head and neck paraganglioma (HNP) is caused by germline mutations of at least three succinate dehydrogenase subunit genes (SDHx). Mutation analysis for all 3 costs approximately US


European Journal of Nuclear Medicine and Molecular Imaging | 2012

EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma

David Taïeb; Henri Timmers; Elif Hindié; Benjamin Guillet; Hartmut P. H. Neumann; Martin K. Walz; Giuseppe Opocher; Wouter W. de Herder; Carsten Christof Boedeker; Ronald R. de Krijger; Arturo Chiti; Adil Al-Nahhas; Karel Pacak; Domenico Rubello

2,700 per patient. Genetic classification is essential for downstream management of the patient and preemptive management of family members. Utilizing HNP as a model, we wanted to determine predictors to prioritize the most heritable clinical presentations and which gene to begin testing in HNP presentations, to reduce costs of genetic screening. Patients were tested for SDHB, SDHC, and SDHD intragenic mutations and large deletions. Clinical parameters were analyzed as potential predictors for finding germline mutations. Cost reduction was calculated between prioritized gene testing compared with that for all genes. Of 598 patients, 30.6% had SDHx germline mutations: 34.4% in SDHB, 14.2% SDHC, and 51.4% SDHD. Predictors for an SDHx mutation are family history [odds ratio (OR), 37.9], previous pheochromocytoma (OR, 10.9), multiple HNP (OR, 10.6), age <or=40 years (OR, 4.0), and male gender (OR, 3.5). By screening only preselected cases and a stepwise approach, 60% cost reduction can be achieved, with 91.8% sensitivity and 94.5% negative predictive value. Our data give evidence that clinical parameters can predict for mutation and help prioritize gene testing to reduce costs in HNP. Such strategy is cost-saving in the practice of genetics-based personalized health care.


JAMA | 2010

Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas.

Li Yao; Francesca Schiavi; Alberto Cascón; Yuejuan Qin; Lucía Inglada-Pérez; Elizabeth E. King; Rodrigo A. Toledo; Tonino Ercolino; Elena Rapizzi; Christopher J. Ricketts; Luigi Mori; Mara Giacchè; Antonella Mendola; Elisa Taschin; Francesca Boaretto; Paola Loli; Maurizio Iacobone; Gian Paolo Rossi; Bernadette Biondi; José Viana Lima-Junior; Claudio E. Kater; Marie Bex; Miikka Vikkula; Ashley B. Grossman; Stephen B. Gruber; Marta Barontini; Alexandre Persu; Maurizio Castellano; Sergio P. A. Toledo; Eamonn R. Maher

PurposeRadionuclide imaging of phaeochromocytomas (PCCs) and paragangliomas (PGLs) involves various functional imaging techniques and approaches for accurate diagnosis, staging and tumour characterization. The purpose of the present guidelines is to assist nuclear medicine practitioners in performing, interpreting and reporting the results of the currently available SPECT and PET imaging approaches. These guidelines are intended to present information specifically adapted to European practice.MethodsGuidelines from related fields, issued by the European Association of Nuclear Medicine and the Society of Nuclear Medicine, were taken into consideration and are partially integrated within this text. The same was applied to the relevant literature, and the final result was discussed with leading experts involved in the management of patients with PCC/PGL. The information provided should be viewed in the context of local conditions, laws and regulations.ConclusionAlthough several radionuclide imaging modalities are considered herein, considerable focus is given to PET imaging which offers high sensitivity targeted molecular imaging approaches.


Clinical Cancer Research | 2009

Clinical predictors and algorithm for the genetic diagnosis of pheochromocytoma patients.

Lisa Rybicki; Mariola Pęczkowska; Henriette Golcher; Peter Herbert Kann; Michael Brauckhoff; Karsten Müssig; Michaela Muresan; Andreas Schäffler; Nicole Reisch; M. Schott; Martin Fassnacht; Giuseppe Opocher; Silke Klose; Christian Fottner; Flavio Forrer; Ursula Plöckinger; Stephan Petersenn; Dimitry Zabolotny; Oleg Kollukch; Svetlana Yaremchuk; Andrzej Januszewicz; Martin K. Walz; Charis Eng; Hartmut P. H. Neumann

CONTEXT Pheochromocytomas and paragangliomas are genetically heterogeneous neural crest-derived neoplasms. We recently identified germline mutations of the novel transmembrane-encoding gene FP/TMEM127 in familial and sporadic pheochromocytomas consistent with a tumor suppressor effect. OBJECTIVES To examine the prevalence and spectrum of FP/TMEM127 mutations in pheochromocytomas and paragangliomas and to test the effect of mutations in vitro. DESIGN, SETTING, AND PARTICIPANTS We sequenced the FP/TMEM127 gene in 990 individuals with pheochromocytomas and/or paragangliomas, including 898 previously unreported cases without mutations in other susceptibility genes from 8 independent worldwide referral centers between January 2009 and June 2010. A multiplex polymerase chain reaction-based method was developed to screen for large gene deletions in 545 of these samples. Confocal microscopy of 5 transfected mutant proteins was used to determine their subcellular localization. MAIN OUTCOME MEASURES The frequency and type of FP/TMEM127 mutation or deletion was assessed and correlated with clinical variables; the subcellular localization of 5 overexpressed mutants was compared with wild-type FP/TMEM127 protein. RESULTS We identified 19 potentially pathogenic FP/TMEM127 germline mutations in 20 independent families, but no large deletions were detected. All mutation carriers had adrenal tumors, including 7 bilateral (P = 2.7 × 10(-4)) and/or with familial disease (5 of 20 samples; P = .005). The median age at disease onset in the FP/TMEM127 mutation group was similar to that of patients without a mutation (41.5 vs 45 years, respectively; P = .54). The most common presentation was that of a single benign adrenal tumor in patients older than 40 years. Malignancy was seen in 1 mutation carrier (5%). Expression of 5 novel FP/TMEM127 mutations in cell lines revealed diffuse localization of the mutant proteins in contrast with the discrete multiorganelle distribution of wild-type TMEM127. CONCLUSIONS Germline mutations of FP/TMEM127 were associated with pheochromocytoma but not paraganglioma and occurred in an age group frequently excluded from genetic screening algorithms. Disease-associated mutations disrupt intracellular distribution of the FP/TMEM127 protein.

Collaboration


Dive into the Giuseppe Opocher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mercedes Robledo

Instituto de Salud Carlos III

View shared research outputs
Researchain Logo
Decentralizing Knowledge