Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Pellizzer is active.

Publication


Featured researches published by Giuseppe Pellizzer.


The Journal of Neuroscience | 2010

Beta-Band Activity during Motor Planning Reflects Response Uncertainty

Charidimos Tzagarakis; Nuri F. Ince; Arthur C. Leuthold; Giuseppe Pellizzer

It has been known for many years that the power of beta-band oscillatory activity in motor-related brain regions decreases during the preparation and execution of voluntary movements. However, it is not clear yet whether the amplitude of this desynchronization is modulated by any parameter of the motor task. Here, we examined whether the degree of uncertainty about the upcoming movement direction modulated beta-band desynchronization during motor preparation. To this end, we recorded whole-head neuromagnetic signals while human subjects performed an instructed-delay reaching task with one, two, or three possible target directions. We found that the reduction of power of beta-band activity (16–28 Hz) during motor preparation was scaled relative to directional uncertainty. Furthermore, we show that the change of beta-band power correlates with the change of latency of response associated with response uncertainty. Finally, we show that the main source of beta-band desynchronization was located in the peri-Rolandic region. The results establish directional uncertainty as an important determinant of beta-band power during motor preparation and indicate that neural activity in the sensorimotor cortex during motor preparation covaries with directional uncertainty.


Experimental Brain Research | 1993

Motor cortical activity preceding a memorized movement trajectory with an orthogonal bend

James Ashe; Masato Taira; Nikolaos Smyrnis; Giuseppe Pellizzer; Theodoros Georgakopoulos; Joseph T. Lurito; Apostolos P. Georgopoulos

Two monkeys were trained to make an arm movement with an orthogonal bend, first up and then to the left (⌝), following a waiting period. They held a two-dimensional manipulandum over a spot of light at the center of a planar working surface. When this light went off, the animals were required to hold the manipulandum there for 600–700 ms and then move the handle up and to the left to receive a liquid reward. There were no external signals concerning the “go” time or the trajectory of the movement. It was hypothesized that during that period signs of directional processing relating to the upcoming movement would be identified in the motor cortex. Following 20 trials of the memorized movement trajectory, 40 trials of visually triggered movements in radially arranged directions were performed. The activity of 137 single cells in the motor cortex was recorded extracellularly during performance of the task. It was found that 62.8% of the cells changed activity during the memorized waiting period. During the waiting period, the population vector (Georgopoulos et al. 1983, 1984) began to grow approximately 130 ms after the center light was turned off; it pointed first in the direction of the second part of the memorized movement (←) and then rotated clockwise towards the direction of the initial part of the movement (↑). These findings indicate processing of directional information during the waiting period preceding the memorized movement. This conclusion was supported by the results of experiments in ten human subjects, who performed the same memorized movement (⌝). In 10% of the trials a visual stimulus was shown in radially arranged directions in which the subjects had to move; this stimulus was shown at 0, 200, and 400 ms from the time the center light was turned off. We found that as the interval increased the reaction time shortened for the visual stimulus that was in the same direction as the upward component of the memorized movement.


Experimental Brain Research | 1992

Three-dimensional drawings in isometric conditions: relation between geometry and kinematics

J. T. Massey; Joseph T. Lurito; Giuseppe Pellizzer; Apostolos P. Georgopoulos

SummaryNormal human subjects grasped a 3-D isometric handle with an otherwise unrestrained, pronated hand and exerted forces continuously to draw circles, ellipses and lemniscates (figure-eights) in specified planes in the presence or absence of a 3-D visual force-feedback cursor and a visual template. Under any of these conditions and in all subjects, a significant positive correlation was observed between the instantaneous curvature and angular velocity, and between the instantaneous radius of curvature and tangential velocity; that is, when the force trajectory was most curved, the tangential velocity was lowest. This finding is similar to that obtained by Viviani and Terzuolo (1982) for 2-D drawing arm movements and supports the notion that central constraints give rise to the relation between geometric and kinematic parameters of the trajectory.


Experimental Brain Research | 1993

Common processing constraints for visuomotor and visual mental rotations

Giuseppe Pellizzer; Apostolos P. Georgopoulos

Naive human subjects were tested in three different tasks: (1) a visuomotor mental rotation task, in which the subjects were instructed to move a cursor at a given angle from a stimulus direction; (2) a visual mental rotation task, in which the subjects had to decide whether a displayed letter was normal or mirror image regardless of its orientation in the plane of presentation; and (3) a visuomotor memory scanning task, in which a list of two to five stimuli directions were presented sequentially and then one of the stimuli (test stimulus), except the last one, was presented again. Subjects were instructed to move a cursor in the direction of the stimulus that followed the test stimulus in the previous sequence. The processing rate of each subject in each task was estimated using the linear relation between the response time and the angle (mental rotation tasks) or the list length (memory scanning task). We found that the processing rates in the mental rotation tasks were significantly correlated but that neither correlated significantly with the processing rate in the memory scanning task. These results suggest that visuomotor and visual mental rotations share common processing constraints that cannot be ascribed to general mental processing performances.


Brain Research Reviews | 1998

Functional magnetic resonance imaging of mental rotation and memory scanning: A multidimensional scaling analysis of brain activation patterns

Georgios A. Tagaris; Wolfgang Richter; Seong-Gi Kim; Giuseppe Pellizzer; Peter Andersen; Kamil Ugurbil; Apostolos P. Georgopoulos

a ( ) Brain Sciences Center 11B , Veterans Affairs Medical Center, Minneapolis, MN 55417, USA b Department of Physiology, UniOersity of Minnesota Medical School, Minneapolis, MN, USA c Department of Neurology, UniOersity of Minnesota Medical School, Minneapolis, MN, USA d Center for Magnetic Resonance Research, UniOersity of Minnesota Medical School, Minneapolis, MN, USA e Department of Radiology, UniOersity of Minnesota Medical School, Minneapolis, MN, USA f Department of Psychiatry, UniOersity of Minnesota Medical School, Minneapolis, MN, USA


Journal of Computational Neuroscience | 1999

Neural Coding of Finger and Wrist Movements

Apostolos P. Georgopoulos; Giuseppe Pellizzer; Andrew V. Poliakov; Marc H. Schieber

Previous work (Schieber and Hibbard, 1993) has shown that single motor cortical neurons do not discharge specifically for a particular flexion-extension finger movement but instead are active with movements of different fingers. In addition, neuronal populations active with movements of different fingers overlap extensively in their spatial locations in the motor cortex. These data suggested that control of any finger movement utilizes a distributed population of neurons. In this study we applied the neuronal population vector analysis (Georgopoulos et al., 1983) to these same data to determine (1) whether single cells are tuned in an abstract, three-dimensional (3D) instructed finger and wrist movement space with hand-like geometry and (2) whether the neuronal population encodes specific finger movements. We found that the activity of 132/176 (75%) motor cortical neurons related to finger movements was indeed tuned in this space. Moreover, the population vector computed in this space predicted well the instructed finger movement. Thus, although single neurons may be related to several disparate finger movements, and neurons related to different finger movements are intermingled throughout the hand area of the motor cortex, the neuronal population activity does specify particular finger movements.


PLOS ONE | 2010

High Accuracy Decoding of Movement Target Direction in Non-Human Primates Based on Common Spatial Patterns of Local Field Potentials

Nuri F. Ince; Rahul Gupta; Sami Arica; Ahmed H. Tewfik; James Ashe; Giuseppe Pellizzer

Background The current development of brain-machine interface technology is limited, among other factors, by concerns about the long-term stability of single- and multi-unit neural signals. In addition, the understanding of the relation between potentially more stable neural signals, such as local field potentials, and motor behavior is still in its early stages. Methodology/Principal Findings We tested the hypothesis that spatial correlation patterns of neural data can be used to decode movement target direction. In particular, we examined local field potentials (LFP), which are thought to be more stable over time than single unit activity (SUA). Using LFP recordings from chronically implanted electrodes in the dorsal premotor and primary motor cortex of non-human primates trained to make arm movements in different directions, we made the following observations: (i) it is possible to decode movement target direction with high fidelity from the spatial correlation patterns of neural activity in both primary motor (M1) and dorsal premotor cortex (PMd); (ii) the decoding accuracy of LFP was similar to the decoding accuracy obtained with the set of SUA recorded simultaneously; (iii) directional information varied with the LFP frequency sub-band, being greater in low (0.3–4 Hz) and high (48–200 Hz) frequency bands than in intermediate bands; (iv) the amount of directional information was similar in M1 and PMd; (v) reliable decoding was achieved well in advance of movement onset; and (vi) LFP were relatively stable over a period of one week. Conclusions/Significance The results demonstrate that the spatial correlation patterns of LFP signals can be used to decode movement target direction. This finding suggests that parameters of movement, such as target direction, have a stable spatial distribution within primary motor and dorsal premotor cortex, which may be used for brain-machine interfaces.


Neuropsychologia | 1995

The mental and the neural: psychological and neural studies of mental rotation and memory scanning.

Apostolos P. Georgopoulos; Giuseppe Pellizzer

In this article we review studies pertaining to psychophysical measurements and neural correlates of tasks requiring the processing of directional information in spatial motor tasks. The results of psychological studies in human subjects indicate that time-consuming processes underlie mental rotation and memory scanning. Other studies have suggested that these processes may rely on different basic mechanisms. A direct insight into their neural mechanisms was obtained analyzing the activity of single cells and neuronal populations in the brain of behaving monkeys performing the same tasks. These studies revealed the nature of the neural processes underlying mental rotation and memory scanning and confirmed their different nature.


Brain and Cognition | 1996

Visuo-manual Aiming Movements in 6- to 10-Year-Old Children: Evidence for an Asymmetric and Asynchronous Development of Information Processes

Giuseppe Pellizzer; Claude-Alain Hauert

Sixty children from 6 to 10 years old participated in an open-loop visuo-manual aiming task (Experiment 1). They were asked to point as fast and accurately as possible toward lateralized visual targets. Responses were wrist flexion-extension movements. Results showed non-monotonic changes with age of constant error, reaction time, and movement time. Constant error for targets presented in the right visual field increased between 6 and 8 years and decreased afterward. Reaction time and movement time decreased with age except at 8 years where they tended to increase. The same subjects participated in two control tasks. One task was designed to test the spatial localization of the lateralized visual targets (Experiment 2). Results showed that subjects localized very accurately the targets at all ages. The second control task was designed to test simple reaction time to the same visual stimuli used in the previous tasks (Experiment 3). Results indicate that reaction time decreased linearly with age when no spatial processing is required for the production of the response. The results of the three experiments showed different developmental functions according to the processes involved in each task. Moreover, they suggest that the conversion from visual to motor coordinates undergo a qualitative change at 8 years of age, and that the prevailing process of this conversion is located in the left cerebral hemisphere.


Experimental Brain Research | 2003

Motor planning: effect of directional uncertainty with discrete spatial cues

Giuseppe Pellizzer; James H. Hedges

We investigated the effect of spatial uncertainty on motor planning by using the cueing method in a reaching task (experiment 1). Discrete spatial cues indicated the different locations in which the target could be presented. The number of cues as well as their direction changed from trial to trial. We tested the adequacy of two models of motor planning to account for the data. The switching model assumes that only one motor response can be planned at a time, whereas the capacity-sharing model assumes that multiple motor responses can be planned in parallel. Both models predict the same relation between average reaction time (RT) and number of cues, but they differ in their prediction of the shape of the distribution of the reaction time. The results showed that RT increased with the number of cues independently from their spatial dispersion. This relation was well described by the function predicted by both models, whereas it was poorly described by the Hick-Hyman law. In addition, the distribution of RT conformed to the prediction of the capacity-sharing model and not to that of the switching model. We investigated the role that the requirement of a spatially directed motor response might have had on this pattern of results by testing subjects in a simple RT task (experiment 2) with the same cueing presentation as in experiment 1. The results contrasted with those in experiment 1 and showed that RT was dependent on the spatial dispersion of the cues and not on their number. The results of the two experiments suggest that the mode of processing of potential targets is dependent on the spatial constraints of the task. The processing resources can be either divided relative to the spatial distribution of possible targets or across multiple independent discrete representations of these targets.

Collaboration


Dive into the Giuseppe Pellizzer's collaboration.

Top Co-Authors

Avatar

Apostolos P. Georgopoulos

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nuri F. Ince

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Ashe

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rahul Gupta

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge