Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Piscosquito is active.

Publication


Featured researches published by Giuseppe Piscosquito.


Journal of Neurology, Neurosurgery, and Psychiatry | 2015

CMT subtypes and disease burden in patients enrolled in the Inherited Neuropathies Consortium natural history study: a cross-sectional analysis.

Vera Fridman; B Bundy; Mary M. Reilly; Davide Pareyson; Chelsea Bacon; Joshua Burns; John W. Day; Shawna Feely; Richard S. Finkel; Tiffany Grider; Callyn A. Kirk; David N. Herrmann; M Laura; Jun Li; Thomas E. Lloyd; Charlotte J. Sumner; Francesco Muntoni; Giuseppe Piscosquito; Sindhu Ramchandren; R Shy; Carly E. Siskind; Sabrina W. Yum; Isabella Moroni; E Pagliano; Stephan Züchner; Steven S. Scherer; Michael E. Shy

Background The international Inherited Neuropathy Consortium (INC) was created with the goal of obtaining much needed natural history data for patients with Charcot-Marie-Tooth (CMT) disease. We analysed clinical and genetic data from patients in the INC to determine the distribution of CMT subtypes and the clinical impairment associated with them. Methods We analysed data from 1652 patients evaluated at 13 INC centres. The distribution of CMT subtypes and pathogenic genetic mutations were determined. The disease burden of all the mutations was assessed by the CMT Neuropathy Score (CMTNS) and CMT Examination Score (CMTES). Results 997 of the 1652 patients (60.4%) received a genetic diagnosis. The most common CMT subtypes were CMT1A/PMP22 duplication, CMT1X/GJB1 mutation, CMT2A/MFN2 mutation, CMT1B/MPZ mutation, and hereditary neuropathy with liability to pressure palsy/PMP22 deletion. These five subtypes of CMT accounted for 89.2% of all genetically confirmed mutations. Mean CMTNS for some but not all subtypes were similar to those previously reported. Conclusions Our findings confirm that large numbers of patients with a representative variety of CMT subtypes have been enrolled and that the frequency of achieving a molecular diagnosis and distribution of the CMT subtypes reflects those previously reported. Measures of severity are similar, though not identical, to results from smaller series. This study confirms that it is possible to assess patients in a uniform way between international centres, which is critical for the planned natural history study and future clinical trials. These data will provide a representative baseline for longitudinal studies of CMT. Clinical trial registration ID number NCT01193075.


Annals of Neurology | 2013

Anti–amyloid β autoantibodies in cerebral amyloid angiopathy–related inflammation: Implications for amyloid-modifying therapies

Fabrizio Piazza; Steven M. Greenberg; Mario Savoiardo; Margherita Gardinetti; Luisa Chiapparini; Irina Raicher; Ricardo Nitrini; Hideya Sakaguchi; Monica Brioschi; Giuseppe Billo; Antonio Colombo; Francesca Lanzani; Giuseppe Piscosquito; Maria Rita Carriero; Giorgio Giaccone; Fabrizio Tagliavini; Carlo Ferrarese; Jacopo C. DiFrancesco

Cerebral amyloid angiopathy–related inflammation (CAA‐ri) is characterized by vasogenic edema and multiple cortical/subcortical microbleeds, sharing several aspects with the recently defined amyloid‐related imaging abnormalities (ARIA) reported in Alzheimers disease (AD) passive immunization therapies. Herein, we investigated the role of anti–amyloid β (Aβ) autoantibodies in the acute and remission phases of CAA‐ri.


Brain | 2014

Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48.

Viviana Pensato; Barbara Castellotti; Cinzia Gellera; Davide Pareyson; Claudia Ciano; Lorenzo Nanetti; Ettore Salsano; Giuseppe Piscosquito; Elisa Sarto; Marica Eoli; Isabella Moroni; Paola Soliveri; E. Lamperti; Luisa Chiapparini; Daniela Di Bella; Franco Taroni; Caterina Mariotti

Hereditary spastic paraplegias are a heterogeneous group of neurodegenerative disorders, clinically classified in pure and complex forms. Genetically, more than 70 different forms of spastic paraplegias have been characterized. A subgroup of complicate recessive forms has been distinguished for the presence of thin corpus callosum and white matter lesions at brain imaging. This group includes several genetic entities, but most of the cases are caused by mutations in the KIAA1840 (SPG11) and ZFYVE26 genes (SPG15). We studied a cohort of 61 consecutive patients with complicated spastic paraplegias, presenting at least one of the following features: mental retardation, thin corpus callosum and/or white matter lesions. DNA samples were screened for mutations in the SPG11/KIAA1840, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG48/AP5Z1 and SPG54/DDHD2 genes by direct sequencing. Sequence variants were found in 30 of 61 cases: 16 patients carried SPG11/KIAA1840 gene variants (26.2%), nine patients carried SPG15/ZFYVE26 variants (14.8%), three patients SPG35/FA2H (5%), and two patients carried SPG48/AP5Z1 gene variants (3%). Mean age at onset was similar in patients with SPG11 and with SPG15 (range 11-36), and the phenotype was mostly indistinguishable. Extrapyramidal signs were observed only in patients with SPG15, and epilepsy in three subjects with SPG11. Motor axonal neuropathy was found in 60% of cases with SPG11 and 70% of cases with SPG15. Subjects with SPG35 had intellectual impairment, spastic paraplegia, thin corpus callosum, white matter hyperintensities, and cerebellar atrophy. Two families had a late-onset presentation, and none had signs of brain iron accumulation. The patients with SPG48 were a 5-year-old child, homozygous for a missense SPG48/AP5Z1 variant, and a 51-year-old female, carrying two different nonsense variants. Both patients had intellectual deficits, thin corpus callosum and white matter lesions. None of the cases in our cohort carried mutations in the SPG21/ACP33 and SPG54/DDH2H genes. Our study confirms that the phenotype of patients with SPG11 and with SPG15 is homogeneous, whereas cases with SPG35 and with SPG48 cases present overlapping features, and a broader clinical spectrum. The large group of non-diagnosed subjects (51%) suggests further genetic heterogeneity. The observation of common clinical features in association with defects in different causative genes, suggest a general vulnerability of the corticospinal tract axons to a wide spectrum of cellular alterations.


Neuroscience Letters | 2015

Mitochondrial dynamics and inherited peripheral nerve diseases.

Davide Pareyson; Paola Saveri; Anna Sagnelli; Giuseppe Piscosquito

Peripheral nerves have peculiar energetic requirements because of considerable length of axons and therefore correct mitochondria functioning and distribution along nerves is fundamental. Mitochondrial dynamics refers to the continuous change in size, shape, and position of mitochondria within cells. Abnormalities of mitochondrial dynamics produced by mutations in proteins involved in mitochondrial fusion (mitofusin-2, MFN2), fission (ganglioside-induced differentiation-associated protein-1, GDAP1), and mitochondrial axonal transport usually present with a Charcot-Marie-Tooth disease (CMT) phenotype. MFN2 mutations cause CMT type 2A by altering mitochondrial fusion and trafficking along the axonal microtubule system. CMT2A is an axonal autosomal dominant CMT type which in most cases is characterized by early onset and rather severe course. GDAP1 mutations also alter fission, fusion and transport of mitochondria and are associated either with recessive demyelinating (CMT4A) and axonal CMT (AR-CMT2K) and, less commonly, with dominant, milder, axonal CMT (CMT2K). OPA1 (Optic Atrophy-1) is involved in fusion of mitochondrial inner membrane, and its heterozygous mutations lead to early-onset and progressive dominant optic atrophy which may be complicated by other neurological symptoms including peripheral neuropathy. Mutations in several proteins fundamental for the axonal transport or forming the axonal cytoskeleton result in peripheral neuropathy, i.e., CMT, distal hereditary motor neuropathy (dHMN) or hereditary sensory and autonomic neuropathy (HSAN), as well as in hereditary spastic paraplegia. Indeed, mitochondrial transport involves directly or indirectly components of the kinesin superfamily (KIF5A, KIF1A, KIF1B), responsible of anterograde transport, and of the dynein complex and related proteins (DYNC1H1, dynactin, dynamin-2), implicated in retrograde flow. Microtubules, neurofilaments, and chaperones such as heat shock proteins (HSPs) also have a fundamental role in mitochondrial transport and mutations in some of related encoding genes cause peripheral neuropathy (TUBB3, NEFL, HSPB1, HSPB8, HSPB3, DNAJB2). In this review, we address the abnormalities in mitochondrial dynamics and their role in determining CMT disease and related neuropathies.


Lancet Neurology | 2013

Peripheral neuropathy in mitochondrial disorders

Davide Pareyson; Giuseppe Piscosquito; Isabella Moroni; Ettore Salsano; Massimo Zeviani

Why is peripheral neuropathy common but mild in many mitochondrial disorders, and why is it, in some cases, the predominant or only manifestation? Although this question remains largely unanswered, recent advances in cellular and molecular biology have begun to clarify the importance of mitochondrial functioning and distribution in the peripheral nerve. Mutations in proteins involved in mitochondrial dynamics (ie, fusion and fission) frequently result in a Charcot-Marie-Tooth phenotype. Peripheral neuropathies with different phenotypic presentations occur in mitochondrial diseases associated with abnormalities in mitochondrial DNA replication and maintenance, or associated with defects in mitochondrial respiratory chain complex V. Our knowledge of mitochondrial disorders is rapidly growing as new nuclear genes are identified and new phenotypes described. Early diagnosis of mitochondrial disorders, essential to provide appropriate genetic counselling, has become crucial in a few treatable conditions. Recognising and diagnosing an underlying mitochondrial defect in patients presenting with peripheral neuropathy is therefore of paramount importance.


Neurology | 2015

A slowly progressive mitochondrial encephalomyopathy widens the spectrum of AIFM1 disorders

Anna Ardissone; Giuseppe Piscosquito; Andrea Legati; Tiziana Langella; Eleonora Lamantea; Barbara Garavaglia; Ettore Salsano; Laura Farina; Isabella Moroni; Davide Pareyson; Daniele Ghezzi

To date, 3 AIFM1 (apoptosis inducing factor mitochondrial 1, located on Xq26.1) mutations have been reported: 2 missense changes (c.923G>A/p.Gly308Glu; c.1478A>T/p.Glu493Val) and a 3-basepair deletion (c.601delAGA/p.Arg201del). Two mutations have been described in early-onset severe mitochondrial encephalomyopathy related to impaired oxidative phosphorylation.1,2 A third mutation is associated with Cowchock syndrome, or Charcot-Marie-Tooth X4 (CMTX4), a slowly progressive disorder characterized by axonal neuropathy, hearing loss, and mental retardation.3,4


Journal of the Neurological Sciences | 2016

Combined central and peripheral demyelination: Clinical features, diagnostic findings, and treatment

Andrea Cortese; Diego Franciotta; Enrico Alfonsi; N. Visigalli; Elisabetta Zardini; Luca Diamanti; Paolo Prunetti; Cecilia Osera; Matteo Gastaldi; Giulia Berzero; Anna Pichiecchio; Giovanni Piccolo; Alessandro Lozza; Giuseppe Piscosquito; Ettore Salsano; Mauro Ceroni; Arrigo Moglia; Giorgio Bono; Davide Pareyson; Enrico Marchioni

Combined central and peripheral demyelination (CCPD) is rare, and current knowledge is based on case reports and small case series. The aim of our study was to describe the clinical features, diagnostic results, treatment and outcomes in a large cohort of patients with CCPD. Thirty-one patients entered this retrospective, observational, two-center study. In 20 patients (65%) CCPD presented, after an infection, as myeloradiculoneuropathy, encephalopathy, cranial neuropathy, length-dependent peripheral neuropathy, or pseudo-Guillain-Barré syndrome. Demyelinating features of peripheral nerve damage fulfilling European Federation of Neurological Societies/Peripheral Nerve Society (EFNS/PNS) electrodiagnostic criteria for CIDP were found in 23 patients (74%), and spatial dissemination of demyelinating lesions on brain MRI fulfilling the 2010 McDonald criteria for multiple sclerosis (MS) in 11 (46%). Two thirds of the patients had a relapsing or progressive disease course, usually related to the appearance of new spinal cord lesions or worsening of the peripheral neuropathy, and showed unsatisfactory responses to high-dose corticosteroids and intravenous immunoglobulins. The clinical presentation of CCPD was severe in 22 patients (71%), who were left significantly disabled. Our data suggest that CCPD has heterogeneous features and shows frequent post-infectious onset, primary peripheral nervous system or central nervous system involvement, a monophasic or chronic disease course, inadequate response to treatments, and a generally poor outcome. We therefore conclude that the current diagnostic criteria for MS and CIDP may not fully encompass the spectrum of possible manifestations of CCPD, whose pathogenesis remains largely unknown.


Gait & Posture | 2014

Postural stabilization and balance assessment in Charcot-Marie-Tooth 1A subjects

T. Lencioni; M. Rabuffetti; Giuseppe Piscosquito; Davide Pareyson; A. Aiello; E. Di Sipio; Luca Padua; F. Stra; M. Ferrarin

The aim of the present study was to assess postural stabilization skill in adult subjects affected by Charcot–Marie–Tooth disease (CMT) type 1A. For this purpose ground reaction force (GRF) was measured by means of a piezoelectric force platform during the sit-to-stand (STS) movement, until a steady state erect posture was achieved. Specific indexes to quantify Centre of Mass acceleration, both during postural stabilization and during quiet standing, were computed using a mathematical model. Forty-seven CMT1A subjects were recruited for the study, and the control group was formed by forty-one age- and sex-matched healthy subjects. The results show that CMT1A subjects are less stable than controls during the quiet stance. Greater difficulty (high values of Yinf, the final instability rate) to maintain erect posture appears to be mainly associated with plantar-flexor muscle weakness, rather than to damage of the proprioceptive system. The worst performances shown by CMT1A subjects in the stabilization phase (high values of I, the global index of postural stabilization performance) seem to be associated with reduced muscle strength and the loss of large sensory nerve fibres. Distal muscle weakness appears to affect both postural stabilization and quiet erect posture. The presented protocol and the analysis of postural stabilization parameters provide useful information on CMT1A balance disorders.


European Journal of Neurology | 2015

Responsiveness of clinical outcome measures in Charcot−Marie−Tooth disease

Giuseppe Piscosquito; Mary M. Reilly; Angelo Schenone; Gian Maria Fabrizi; Tiziana Cavallaro; Lucio Santoro; Fiore Manganelli; Giuseppe Vita; Aldo Quattrone; Luca Padua; Franco Gemignani; Francesco Visioli; M Laura; Daniela Calabrese; Richard Hughes; Davide Radice; Alessandra Solari; Davide Pareyson

Charcot−Marie−Tooth disease (CMT) is a very slowly progressive neuropathy which makes it difficult to detect disease progression over time and to assess intervention efficacy. Experience from completed clinical trials with ascorbic acid and natural history studies confirm difficulties in detecting such changes. Consequently, sensitive‐to‐change outcome measures (OMs) are urgently needed.


Brain | 2015

Genotype–phenotype characteristics and baseline natural history of heritable neuropathies caused by mutations in the MPZ gene

Oranee Sanmaneechai; Shawna Feely; Steven S. Scherer; David N. Herrmann; Joshua Burns; Francesco Muntoni; Jun Li; Carly E. Siskind; John W. Day; M Laura; Charlotte J. Sumner; Thomas E. Lloyd; Sindhu Ramchandren; R Shy; Tiffany Grider; Chelsea Bacon; Richard S. Finkel; Sabrina W. Yum; Isabella Moroni; Giuseppe Piscosquito; Davide Pareyson; Mary M. Reilly; Michael E. Shy

We aimed to characterize genotype-phenotype correlations and establish baseline clinical data for peripheral neuropathies caused by mutations in the myelin protein zero (MPZ) gene. MPZ mutations are the second leading cause of Charcot-Marie-Tooth disease type 1. Recent research makes clinical trials for patients with MPZ mutations a realistic possibility. However, the clinical severity varies with different mutations and natural history data on progression is sparse. We present cross-sectional data to begin to define the phenotypic spectrum and clinical baseline of patients with these mutations. A cohort of patients with MPZ gene mutations was identified in 13 centres of the Inherited Neuropathies Consortium - Rare Disease Clinical Research Consortium (INC-RDCRC) between 2009 and 2012 and at Wayne State University between 1996 and 2009. Patient phenotypes were quantified by the Charcot-Marie-Tooth disease neuropathy score version 1 or 2 and the Charcot-Marie-Tooth disease paediatric scale outcome instruments. Genetic testing was performed in all patients and/or in first- or second-degree relatives to document mutation in MPZ gene indicating diagnosis of Charcot-Marie-Tooth disease type 1B. There were 103 patients from 71 families with 47 different MPZ mutations with a mean age of 40 years (range 3-84 years). Patients and mutations were separated into infantile, childhood and adult-onset groups. The infantile onset group had higher Charcot-Marie-Tooth disease neuropathy score version 1 or 2 and slower nerve conductions than the other groups, and severity increased with age. Twenty-three patients had no family history of Charcot-Marie-Tooth disease. Sixty-one patients wore foot/ankle orthoses, 19 required walking assistance or support, and 10 required wheelchairs. There was hearing loss in 21 and scoliosis in 17. Forty-two patients did not begin walking until after 15 months of age. Half of the infantile onset patients then required ambulation aids or wheelchairs for ambulation. Our results demonstrate that virtually all MPZ mutations are associated with specific phenotypes. Early onset (infantile and childhood) phenotypes likely represent developmentally impaired myelination, whereas the adult-onset phenotype reflects axonal degeneration without antecedent demyelination. Data from this cohort of patients will provide the baseline data necessary for clinical trials of patients with Charcot-Marie-Tooth disease caused by MPZ gene mutations.

Collaboration


Dive into the Giuseppe Piscosquito's collaboration.

Top Co-Authors

Avatar

Davide Pareyson

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Ettore Salsano

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Isabella Moroni

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Luca Padua

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Claudia Ciano

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Fiore Manganelli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

M Laura

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Mary M. Reilly

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Daniela Calabrese

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Franco Taroni

Carlo Besta Neurological Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge