Giuseppe Saccone
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giuseppe Saccone.
Genetics | 2010
Monika Hediger; Caroline Henggeler; Nicole Meier; Regina Perez; Giuseppe Saccone; Daniel Bopp
The housefly, Musca domestica, is an excellent model system to study the diversification of the pathway that specifies the sexual fate. A number of different mechanisms have been described in the housefly, which reflects in part the broad diversity of sex-determining strategies used in insects. In this study we present the molecular identification and characterization of F, which acts as the master switch in the housefly pathway. We provide evidence that F corresponds to the transformer ortholog in Musca (Mdtra), which, as a result of alternative processing, expresses functional products only in individuals committed to the female fate. We demonstrate that, once activated, a self-sustaining feedback loop will maintain the female-promoting functions of Mdtra. Absence of Mdtra transcripts in eggs of Arrhenogenic (Ag) mutant females suggests that maternally deployed Mdtra activity initiates this self-sustaining loop in the zygote. When an M factor is paternally transmitted to the zygote, the establishment of the loop is prevented at an early stage before cellularization and splicing of Mdtra shifts irreversibly to the male nonproductive mode. On the basis of the analysis of two mutant alleles we can explain the different sex-determining systems in the housefly largely as deviations at the level of Mdtra regulation. This plasticity in the housefly pathway may provide a suitable framework to understand the evolution of sex-determining mechanisms in other insect species. For instance, while sex determination in a close relative, the tsetse fly Glossina morsitans, differs at the level of the instructive signal, we find that its tra ortholog, Gmtra, is regulated in a mode similar to that of Mdtra.
The International Journal of Developmental Biology | 2009
Marco Salvemini; Mark Robertson; Benjamin Aronson; Peter Atkinson; Lino C. Polito; Giuseppe Saccone
In Drosophila melanogaster, transformer-2 (TRA-2) which is a non-sex-specific auxiliary splicing factor, is required to promote female sexual differentiation by interaction with the female-specific TRA. The two proteins positively regulate the splicing of both doublesex (dsx) and fruitless (fru) pre-mRNAs, which in turn regulate phenotypic and behavioural sexual dimorphism. In the Mediterranean fruitfly Ceratitis capitata, the female-specific CcTRA is similarly required not only for Ccdsx splicing, but also to exert a novel autoregulatory function that consists of promoting female-specific splicing of Cctra pre-mRNA. This study reports the isolation and functional analysis of the C. capitata homologue of the Drosophila transformer-2 gene (Cctra-2). Transient RNAi against Cctra-2 during embryonic development causes the full sex reversal of XX flies in adult fertile pseudo-males, as well as changes in the splicing pattern of Cctra, Ccdsx and Ccfruitless (Ccfru). We propose that: 1) Cctra-2, as in Drosophila, is necessary for promoting Ccdsx and putative Ccfru pre-mRNA female-specific splicing and that 2) unlike in Drosophila, Cctra-2 appears to be necessary for establishing female sex determination in early XX embryos and for maintaining the positive feedback regulation of Cctra during development.
Science | 1995
Laurence J. Zwiebel; Giuseppe Saccone; Antigone Zacharopoulou; Nora J. Besansky; Guido Favia; Frank H. Collins; Christos Louis; Fotis C. Kafatos
Reliable germline transformation is required for molecular studies and ultimately for genetic control of economically important insects, such as the Mediterranean fruit fly (medfly) Ceratitis capitata. A prerequisite for the establishment and maintenance of transformant lines is selectable or phenotypically dominant markers. To this end, a complementary DNA clone derived from the medfly white gene was isolated, which showed substantial similarity to white genes in Drosophila melanogaster and other Diptera. It is correlated with a spontaneous mutation causing white eyes in the medfly and can be used to restore partial eye color in transgenic Drosophila carrying a null mutation in the endogenous white gene.
PLOS ONE | 2007
María Fernanda Ruiz; Andreina Milano; Marco Salvemini; José M. Eirín-López; André L.P. Perondini; Denise Selivon; Catello Polito; Giuseppe Saccone; Lucas Sánchez
In the tephritids Ceratitis capitata and Bactrocera oleae, the gene transformer acts as the memory device for sex determination, via an auto-regulatory function; and functional Tra protein is produced only in females. This paper investigates the evolution of the gene tra, which was characterised in twelve tephritid species belonging to the less extensively analysed genus Anastrepha. Our study provided the following major conclusions. Firstly, the memory device mechanism used by this gene in sex determination in tephritids likely existed in the common ancestor of the Ceratitis, Bactrocera and Anastrepha phylogenetic lineages. This mechanism would represent the ancestral state with respect to the extant cascade seen in the more evolved Drosophila lineage. Secondly, Transformer2-specific binding intronic splicing silencer sites were found in the splicing regulatory region of transformer but not in doublesex pre-mRNAs in these tephritids. Thus, these sites probably provide the discriminating feature for the putative dual splicing activity of the Tra-Tra2 complex in tephritids. It acts as a splicing activator in dsx pre-mRNA splicing (its binding to the female-specific exon promotes the inclusion of this exon into the mature mRNA), and as a splicing inhibitor in tra pre-mRNA splicing (its binding to the male-specific exons prevents the inclusion of these exons into the mature mRNA). Further, a highly conserved region was found in the specific amino-terminal region of the tephritid Tra protein that might be involved in Tra auto-regulatory function and hence in its repressive splicing behaviour. Finally, the Tra proteins conserved the SR dipeptides, which are essential for Tra functionality.
International Journal of Molecular Sciences | 2013
Weiwei Zheng; Wei Peng; Chipan Zhu; Qun Zhang; Giuseppe Saccone; Hongyu Zhang
Olfaction is crucial in many insects for critical behaviors, including those regulating survival and reproduction. Insect odorant-binding proteins (OBPs) function in the first step of the olfactory system and play an essential role in the perception of odorants, such as pheromones and host chemicals. The oriental fruit fly, Bactrocera dorsalis, is a destructive fruit-eating pest, due to its wide host range of up to 250 different types of fruits and vegetables, and this fly causes severe economic damage to the fruit and vegetable industry. However, OBP genes have not been largely identified in B. dorsalis. Based on our previously constructed B. dorsalis cDNA library, ten OBP genes were identified in B. dorsalis for the first time. A phylogenetic tree was generated to show the relationships among the 10 OBPs of B. dorsalis to OBP sequences of two other Dipteran species, including Drosophila melanogaster and the mosquito Anopheles gambiae. The expression profiles of the ten OBPs in different tissues (heads, thoraxes, abdomens, legs, wings, male antennae and female antenna) of the mated adults were analyzed by real-time PCR. The results showed that nine of them are highly expressed in the antenna of both sexes, except BdorOBP7. Four OBPs (BdorOBP1, BdorOBP4, BdorOBP8, and BdorOBP10) are also enriched in the abdomen, and BdorOBP7 is specifically expressed in leg, indicating that it may function in other biological processes. This work will provide insight into the roles of OBPs in chemoreception and help develop new pest-control strategies.
Genome Biology | 2016
Alexie Papanicolaou; Marc F. Schetelig; Peter Arensburger; Peter W. Atkinson; Joshua B. Benoit; Kostas Bourtzis; Pedro Castañera; John P. Cavanaugh; Hsu Chao; Christopher Childers; Ingrid Curril; Huyen Dinh; HarshaVardhan Doddapaneni; Amanda Dolan; Shannon Dugan; Markus Friedrich; Giuliano Gasperi; Scott M. Geib; Georgios Georgakilas; Richard A. Gibbs; Sarah D. Giers; Ludvik M. Gomulski; Miguel González-Guzmán; Ana Guillem-Amat; Yi Han; Artemis G. Hatzigeorgiou; Pedro Hernández-Crespo; Daniel S.T. Hughes; Jeffery W. Jones; Dimitra Karagkouni
The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution.
Journal of Genetics | 2010
Marco Salvemini; Catello Polito; Giuseppe Saccone
Courtship behaviours are common features of animal species that reproduce sexually. Typically, males are involved in courting females. Insects display an astonishing variety of courtship strategies primarily based on innate stereotyped responses to various external stimuli. In Drosophila melanogaster, male courtship requires proteins encoded by the fruitless (fru) gene that are produced in different sex-specific isoforms via alternative splicing. Drosophila mutant flies with loss-of-function alleles of the fru gene exhibit blocked male courtship behaviour. However, various individual steps in the courtship ritual are disrupted in fly strains carrying different fru alleles. These findings suggest that fru is required for specific steps in courtship. In distantly related insect species, various fru paralogues were isolated, which shows conservation of sex-specific alternative splicing and protein expression in neural tissues and suggests an evolutionary functional conservation of fru in the control of male-specific-courtship behaviour. In this review, we report the seminal findings regarding the fru gene, its splicing regulation and evolution in insects.
PLOS ONE | 2013
Marco Salvemini; Rocco D'Amato; Valeria Petrella; Serena Aceto; Derric Nimmo; Marco Neira; Luke Alphey; Lino C. Polito; Giuseppe Saccone
In Drosophila melanogaster the doublesex (dsx) and fruitless (fru) regulatory genes act at the bottom of the somatic sex determination pathway. Both are regulated via alternative splicing by an upstream female-specific TRA/TRA-2 complex, recognizing a common cis element. dsx controls somatic sexual differentiation of non-neural as well as of neural tissues. fru, on the other hand, expresses male-specific functions only in neural system where it is required to built the neural circuits underlying proper courtship behaviour. In the mosquito Aedes aegypti sex determination is different from Drosophila. The key male determiner M, which is located on one of a pair of homomorphic sex chromosomes, controls sex-specific splicing of the mosquito dsx orthologue. In this study we report the genomic organization and expression of the fru homologue in Ae. aegypti (Aeafru). We found that it is sex-specifically spliced suggesting that it is also under the control of the sex determination pathway. Comparative analyses between the Aeafru and Anopheles gambiae fru (Angfru) genomic loci revealed partial conservation of exon organization and extensive divergence of intron lengths. We find that Aeadsx and Aeafru share novel cis splicing regulatory elements conserved in the alternatively spliced regions. We propose that in Aedes aegypti sex-specific splicing of dsx and fru is most likely under the control of splicing regulatory factors which are different from TRA and TRA-2 found in other dipteran insects and discuss the potential use of fru and dsx for developing new genetic strategies in vector control.
Pathogens and Global Health | 2015
Vicky Dritsou; Pantelis Topalis; Nikolai Windbichler; Alekos Simoni; Ann Hall; Daniel Lawson; Malcolm Hinsley; Daniel S.T. Hughes; Valerio Napolioni; Francesca Crucianelli; Elena Deligianni; Giuliano Gasperi; Ludvik M. Gomulski; Grazia Savini; Mosè Manni; Francesca Scolari; Anna R. Malacrida; Bruno Arcà; José M. C. Ribeiro; Fabrizio Lombardo; Giuseppe Saccone; Marco Salvemini; Riccardo Moretti; Giuseppe Aprea; Maurizio Calvitti; Matteo Picciolini; Philippos Aris Papathanos; Roberta Spaccapelo; Guido Favia; Andrea Crisanti
Abstract The draft genome sequence of Italian specimens of the Asian tiger mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae) was determined using a standard NGS (next generation sequencing) approach. The size of the assembled genome is comparable to that of Aedes aegypti; the two mosquitoes are also similar as far as the high content of repetitive DNA is concerned, most of which is made up of transposable elements. Although, based on BUSCO (Benchmarking Universal Single-Copy Orthologues) analysis, the genome assembly reported here contains more than 99% of protein-coding genes, several of those are expected to be represented in the assembly in a fragmented state. We also present here the annotation of several families of genes (tRNA genes, miRNA genes, the sialome, genes involved in chromatin condensation, sex determination genes, odorant binding proteins and odorant receptors). These analyses confirm that the assembly can be used for the study of the biology of this invasive vector of disease.
Insect Molecular Biology | 2016
Kaleem Tariq; Wei Peng; Giuseppe Saccone; Hongyu Zhang
MicroRNAs (miRNAs) are small noncoding RNAs that regulate various diverse biological processes including insect spermatogenesis. The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive horticultural pests in East Asia and the Pacific region. Although developmental miRNA profiles of B. dorsalis have enriched our knowledge, specific testicular miRNAs in this dipteran species are unexplored. In this study, we identified miRNAs from B. dorsalis testes by deep sequencing, which provided an overview of miRNA expression during spermatogenesis. Small RNA libraries were constructed from the testes of fully mature (FM), immature (IM) and middle‐aged (MA) adult flies of B. dorsalis. Small RNA sequencing and data analysis revealed 172 known and 78 novel miRNAs amongst these libraries. Pairwise comparisons of libraries led to the identification of 24, 15 and 14 differentially expressed miRNAs in FM vs. IM, FM vs. MA and IM vs. MA insects, respectively. Using a bioinformatic approach, we predicted 124 target genes against the 13 most differentially expressed miRNAs. Furthermore, the expression patterns of six randomly selected miRNAs (from the 13 most differentially expressed miRNAs) and their putative target genes (from the 124 predicted target genes) were analysed in the testis of B. dorsalis by quantitative real‐time PCR, which showed that out of six, four tested miRNAs‐mRNAs had an inverse expression pattern and are probably co‐regulated. This study is the first comparative profile of the miRNA transcriptome in three developmental stages of the testis, and provides a useful resource for further studies on the role of miRNAs in spermatogenesis in B. dorsalis.