Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Servillo is active.

Publication


Featured researches published by Giuseppe Servillo.


Nature Immunology | 2011

Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells

Maria Teresa Pallotta; Ciriana Orabona; Claudia Volpi; Carmine Vacca; Maria Laura Belladonna; Roberta Bianchi; Giuseppe Servillo; Cinzia Brunacci; Mario Calvitti; Silvio Bicciato; Emilia Maria Cristina Mazza; Louis Boon; Fabio Grassi; Maria C. Fioretti; Francesca Fallarino; Paolo Puccetti; Ursula Grohmann

Regulation of tryptophan metabolism by indoleamine 2,3-dioxygenase (IDO) in dendritic cells (DCs) is a highly versatile modulator of immunity. In inflammation, interferon-γ is the main inducer of IDO for the prevention of hyperinflammatory responses, yet IDO is also responsible for self-tolerance effects in the longer term. Here we show that treatment of mouse plasmacytoid DCs (pDCs) with transforming growth factor-β (TGF-β) conferred regulatory effects on IDO that were mechanistically separable from its enzymic activity. We found that IDO was involved in intracellular signaling events responsible for the self-amplification and maintenance of a stably regulatory phenotype in pDCs. Thus, IDO has a tonic, nonenzymic function that contributes to TGF-β-driven tolerance in noninflammatory contexts.


Nature | 2014

Aryl hydrocarbon receptor control of a disease tolerance defence pathway

Alban Bessede; Marco Gargaro; Maria Teresa Pallotta; Davide Matino; Giuseppe Servillo; Cinzia Brunacci; Silvio Bicciato; Emilia Maria Cristina Mazza; Antonio Macchiarulo; Carmine Vacca; Rossana G. Iannitti; Luciana Tissi; Claudia Volpi; Maria Laura Belladonna; Ciriana Orabona; Roberta Bianchi; Tobias V. Lanz; Michael Platten; Maria Agnese Della Fazia; Danilo Piobbico; Teresa Zelante; Hiroshi Funakoshi; Toshikazu Nakamura; David Gilot; Michael S. Denison; Gilles J. Guillemin; James B. DuHadaway; George C. Prendergast; Richard Metz; Michel Geffard

Disease tolerance is the ability of the host to reduce the effect of infection on host fitness. Analysis of disease tolerance pathways could provide new approaches for treating infections and other inflammatory diseases. Typically, an initial exposure to bacterial lipopolysaccharide (LPS) induces a state of refractoriness to further LPS challenge (endotoxin tolerance). We found that a first exposure of mice to LPS activated the ligand-operated transcription factor aryl hydrocarbon receptor (AhR) and the hepatic enzyme tryptophan 2,3-dioxygenase, which provided an activating ligand to the former, to downregulate early inflammatory gene expression. However, on LPS rechallenge, AhR engaged in long-term regulation of systemic inflammation only in the presence of indoleamine 2,3-dioxygenase 1 (IDO1). AhR-complex-associated Src kinase activity promoted IDO1 phosphorylation and signalling ability. The resulting endotoxin-tolerant state was found to protect mice against immunopathology in Gram-negative and Gram-positive infections, pointing to a role for AhR in contributing to host fitness.


Nature Communications | 2012

Sensing of mammalian IL-17A regulates fungal adaptation and virulence

Teresa Zelante; Rossana G. Iannitti; Antonella De Luca; Javier Arroyo; Noelia Blanco; Giuseppe Servillo; Dominique Sanglard; Utz Reichard; Glen E. Palmer; Jean Paul Latgé; Paolo Puccetti; Luigina Romani

Infections by opportunistic fungi have traditionally been viewed as the gross result of a pathogenic automatism, which makes a weakened host more vulnerable to microbial insults. However, fungal sensing of a hosts immune environment might render this process more elaborate than previously appreciated. Here we show that interleukin (IL)-17A binds fungal cells, thus tackling both sides of the host-pathogen interaction in experimental settings of host colonization and/or chronic infection. Global transcriptional profiling reveals that IL-17A induces artificial nutrient starvation conditions in Candida albicans, resulting in a downregulation of the target of rapamycin signalling pathway and in an increase in autophagic responses and intracellular cAMP. The augmented adhesion and filamentous growth, also observed with Aspergillus fumigatus, eventually translates into enhanced biofilm formation and resistance to local antifungal defenses. This might exemplify a mechanism whereby fungi have evolved a means of sensing host immunity to ensure their own persistence in an immunologically dynamic environment.


Aging Cell | 2013

Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging.

Valentina Gambino; Giulia De Michele; Oriella Venezia; Pierluigi Migliaccio; Valentina Dall'Olio; Loris Bernard; Simone P. Minardi; Maria Agnese Della Fazia; Daniela Bartoli; Giuseppe Servillo; Myriam Alcalay; Lucilla Luzi; Marco Giorgio; Heidi Scrable; Pier Giuseppe Pelicci; Enrica Migliaccio

Oxidative stress is a determining factor of cellular senescence and aging and a potent inducer of the tumour‐suppressor p53. Resistance to oxidative stress correlates with delayed aging in mammals, in the absence of accelerated tumorigenesis, suggesting inactivation of selected p53‐downstream pathways. We investigated p53 regulation in mice carrying deletion of p66, a mutation that retards aging and confers cellular resistance and systemic resistance to oxidative stress. We identified a transcriptional network of ~200 genes that are repressed by p53 and encode for determinants of progression through mitosis or suppression of senescence. They are selectively down‐regulated in cultured fibroblasts after oxidative stress, and, in vivo, in proliferating tissues and during physiological aging. Selectivity is imposed by p66 expression and activation of p44/p53 (also named Delta40p53), a p53 isoform that accelerates aging and prevents mitosis after protein damage. p66 deletion retards aging and increases longevity of p44/p53 transgenic mice. Thus, oxidative stress activates a specific p53 transcriptional response, mediated by p44/p53 and p66, which regulates cellular senescence and aging.


Oncogene | 1997

Cyclic AMP signalling pathway and cellular proliferation: induction of CREM during liver regeneration

Giuseppe Servillo; Lucia Penna; Nicholas S. Foulkes; Mariapia Viola Magni; Maria Agnese Della Fazia; Paolo Sassone-Corsi

The CREM gene encodes both activators and repressors of cAMP-induced gene expression. An isoform of CREM encodes the powerful transcriptional repressor ICER (Inducible cAMP Early Repressor), which has been shown to be inducible by virtue of an alternative, intronic promoter. The CREM gene belongs to the early response class and displays a characteristic neuroendocrine cell- and tissue-specific expression. To date ICER inducibility has been described in non-replicating, terminally differentiated tissues. In this paper we document a robust induction of CREM expression in the regenerating rat liver after partial hepatectomy. This represents the first link of inducible CREM expression to the phenomenon of cellular proliferation. Furthermore, it represents the first example of transcriptional activation of a cAMP-responsive factor in the regenerating liver. This has significant physiological relevance since the adenylate cyclase signalling pathway is strongly implicated in liver regeneration. Finally, we show that the repressor ICER is inducible in the hepatoma cell line H35 upon activation of the adenylate cyclase and phosphorylation of the activator CREB.


Human Molecular Genetics | 2014

Genetically induced dysfunctions of Kir2.1 channels: implications for short QT3 syndrome and autism–epilepsy phenotype

Elena Ambrosini; Federico Sicca; Maria Stefania Brignone; Maria Cristina D'Adamo; Carlo Napolitano; Ilenio Servettini; Francesca Moro; Yanfei Ruan; Luca Guglielmi; Stefania Pieroni; Giuseppe Servillo; Angela Lanciotti; Giulia Valvo; Luigi Catacuzzeno; Fabio Franciolini; Paola Molinari; Maria Marchese; Alessandro Grottesi; Renzo Guerrini; Filippo M. Santorelli; Silvia G. Priori; Mauro Pessia

Short QT3 syndrome (SQT3S) is a cardiac disorder characterized by a high risk of mortality and associated with mutations in Kir2.1 (KCNJ2) channels. The molecular mechanisms leading to channel dysfunction, cardiac rhythm disturbances and neurodevelopmental disorders, potentially associated with SQT3S, remain incompletely understood. Here, we report on monozygotic twins displaying a short QT interval on electrocardiogram recordings and autism–epilepsy phenotype. Genetic screening identified a novel KCNJ2 variant in Kir2.1 that (i) enhanced the channels surface expression and stability at the plasma membrane, (ii) reduced protein ubiquitylation and degradation, (iii) altered protein compartmentalization in lipid rafts by targeting more channels to cholesterol-poor domains and (iv) reduced interactions with caveolin 2. Importantly, our study reveals novel physiological mechanisms concerning wild-type Kir2.1 channel processing by the cell, such as binding to both caveolin 1 and 2, protein degradation through the ubiquitin–proteasome pathway; in addition, it uncovers a potential multifunctional site that controls Kir2.1 surface expression, protein half-life and partitioning to lipid rafts. The reported mechanisms emerge as crucial also for proper astrocyte function, suggesting the need for a neuropsychiatric evaluation in patients with SQT3S and offering new opportunities for disease management.


FEBS Journal | 2008

Disruption of the gene encoding 3β‐hydroxysterol Δ14‐reductase (Tm7sf2) in mice does not impair cholesterol biosynthesis

Anna Maria Bennati; Gianluca Schiavoni; Sebastian Franken; Danilo Piobbico; Maria Agnese Della Fazia; Donatella Caruso; Emma De Fabiani; Laura Benedetti; Maria Gabriella Cusella De Angelis; Volkmar Gieselmann; Giuseppe Servillo; Tommaso Beccari; Rita Roberti

Tm7sf2 gene encodes 3β‐hydroxysterol Δ14‐reductase (C14SR, DHCR14), an endoplasmic reticulum enzyme acting on Δ14‐unsaturated sterol intermediates during the conversion of lanosterol to cholesterol. The C‐terminal domain of lamin B receptor, a protein of the inner nuclear membrane mainly involved in heterochromatin organization, also possesses sterol Δ14‐reductase activity. The subcellular localization suggests a primary role of C14SR in cholesterol biosynthesis. To investigate the role of C14SR and lamin B receptor as 3β‐hydroxysterol Δ14‐reductases, Tm7sf2 knockout mice were generated and their biochemical characterization was performed. No Tm7sf2 mRNA was detected in the liver of knockout mice. Neither C14SR protein nor 3β‐hydroxysterol Δ14‐reductase activity were detectable in liver microsomes of Tm7sf2(−/−) mice, confirming the effectiveness of gene inactivation. C14SR protein and its enzymatic activity were about half of control levels in the liver of heterozygous mice. Normal cholesterol levels in liver membranes and in plasma indicated that, despite the lack of C14SR, Tm7sf2(−/−) mice are able to perform cholesterol biosynthesis. Lamin B receptor 3β‐hydroxysterol Δ14‐reductase activity determined in liver nuclei showed comparable values in wild‐type and knockout mice. These results suggest that lamin B receptor, although residing in nuclear membranes, may contribute to cholesterol biosynthesis in Tm7sf2(−/−) mice. Affymetrix microarray analysis of gene expression revealed that several genes involved in cell‐cycle progression are downregulated in the liver of Tm7sf2(−/−) mice, whereas genes involved in xenobiotic metabolism are upregulated.


Nature Medicine | 2017

Thymosin α1 represents a potential potent single-molecule-based therapy for cystic fibrosis

Luigina Romani; Vasilis Oikonomou; Silvia Moretti; Rossana G. Iannitti; Maria Cristina D'Adamo; Valeria R Villella; Marilena Pariano; Luigi Sforna; Monica Borghi; Marina Maria Bellet; Francesca Fallarino; Maria Teresa Pallotta; Giuseppe Servillo; Eleonora Ferrari; Paolo Puccetti; Guido Kroemer; Mauro Pessia; Luigi Maiuri; Allan L. Goldstein; Enrico Garaci

Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that compromise its chloride channel activity. The most common mutation, p.Phe508del, results in the production of a misfolded CFTR protein, which has residual channel activity but is prematurely degraded. Because of the inherent complexity of the pathogenetic mechanisms involved in CF, which include impaired chloride permeability and persistent lung inflammation, a multidrug approach is required for efficacious CF therapy. To date, no individual drug with pleiotropic beneficial effects is available for CF. Here we report on the ability of thymosin alpha 1 (Tα1)—a naturally occurring polypeptide with an excellent safety profile in the clinic when used as an adjuvant or an immunotherapeutic agent—to rectify the multiple tissue defects in mice with CF as well as in cells from subjects with the p.Phe508del mutation. Tα1 displayed two combined properties that favorably opposed CF symptomatology: it reduced inflammation and increased CFTR maturation, stability and activity. By virtue of this two-pronged action, Tα1 has strong potential to be an efficacious single-molecule-based therapeutic agent for CF.


Biochimica et Biophysica Acta | 2010

Activation of TM7SF2 promoter by SREBP-2 depends on a new sterol regulatory element, a GC-box, and an inverted CCAAT-box

Gianluca Schiavoni; Anna Maria Bennati; Marilena Castelli; Maria Agnese Della Fazia; Tommaso Beccari; Giuseppe Servillo; Rita Roberti

TM7SF2 gene encodes 3beta-hydroxysterol Delta(14)-reductase, responsible for the reduction of C14-unsaturated sterols in cholesterol biosynthesis. TM7SF2 gene expression is controlled by cell sterol levels through the SREBP-2. The motifs of TM7SF2 promoter responsible for activation by SREBP-2 have not been characterized. Using electrophoretic mobility shift assays and mutation analysis, we identified a new SRE motif, 60% identical to an inverted SRE-3, able to bind SREBP-2 in vitro and in vivo. Co-transfection of promoter-luciferase reporter constructs in HepG2 cells showed that the binding of SREBP-2 to SRE produced approximately 26-fold promoter activation, whereas mutation of the SRE motif caused a dramatic decrease of transactivation by SREBP-2. The function of additional motifs that bind transcription factors cooperating with SREBP-2 was investigated. An inverted CCAAT-box, that binds nuclear factor Y (NF-Y), cooperates with SREBP-2 in TM7SF2 promoter activation. Deletion of this motif resulted in the loss of promoter induction by sterol starvation in HepG2 cells, as well as a decrease in fold activation by SREBP-2 in co-transfection experiments. Moreover, co-transfection of the promoter with a plasmid expressing dominant negative NF-YA did not permit full activation by SREBP-2. Three GC-boxes (1, 2, 3), known to bind Sp1 transcription factor, were also investigated. The mutagenesis of each of them produced a decrease in SREBP-2-dependent activation, the most powerful being GC-box2. A triple mutagenized promoter construct did not have an additive effect. We conclude that, besides the SRE motif, both the inverted CCAAT-box and GC-box2 are essential for full promoter activation by SREBP-2.


Journal of Cell Science | 2005

HOPS: a novel cAMP-dependent shuttling protein involved in protein synthesis regulation

Maria Agnese Della Fazia; Marilena Castelli; Daniela Bartoli; Stefania Pieroni; Valentina Pettirossi; Danilo Piobbico; Mariapia Viola-Magni; Giuseppe Servillo

The liver has the ability to autonomously regulate growth and mass. Following partial hepatectomy, hormones, growth factors, cytokines and their coupled signal transduction pathways have been implicated in hepatocyte proliferation. To understand the mechanisms responsible for the proliferative response, we studied liver regeneration by characterization of novel genes that are activated in residual hepatocytes. A regenerating liver cDNA library screening was performed with cDNA-subtracted probes derived from regenerating and normal liver. Here, we describe the biology of Hops (for hepatocyte odd protein shuttling). HOPS is a novel shuttling protein that contains an ubiquitin-like domain, a putative NES and a proline-rich region. HOPS is rapidly exported from the nucleus and is overexpressed during liver regeneration. Evidence shows that cAMP governs HOPS export in hepatocytes of normal and regenerating liver and is mediated via CRM-1. We demonstrate that HOPS binds to elongation factor eEF-1A and interferes in protein synthesis. HOPS overexpression in H-35-hepatoma and 3T3-NIH cells strongly reduces proliferation.

Collaboration


Dive into the Giuseppe Servillo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge