Giuseppe Straface
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giuseppe Straface.
Gastroenterology | 2009
Franco Scaldaferri; Stefania Vetrano; Miquel Sans; Vincenzo Arena; Giuseppe Straface; Egidio Stigliano; Alessandro Repici; Andreas Sturm; Alberto Malesci; Julián Panés; Seppo Yla–Herttuala; Claudio Fiocchi; Silvio Danese
BACKGROUND & AIMS Vascular endothelial growth factor A (VEGF-A) mediates angiogenesis and might also have a role in inflammation and immunity. We examined whether VEGF-A signaling has a role in inflammatory bowel disease (IBD). METHODS Expression levels of VEGF-A, and its receptors VEGFR-1 and VEGFR-2, were examined in samples from patients with IBD and compared with those of controls. The capacity of VEGF-A to induce angiogenesis was tested in human intestinal microvascular endothelial cells using cell-migration and matrigel tubule-formation assays. Levels of vascular cellular adhesion molecule-1 and intercellular adhesion molecule were measured by flow cytometry to determine induction of inflammation; neutrophil adhesion was also assayed. Expression patterns were determined in tissues from mice with dextran sulfate sodium (DSS)-induced colitis; the effects of VEGF-A overexpression and blockade were assessed in these mice by adenoviral transfer of VEGF-A and soluble VEGFR-1. Intestinal angiogenesis was measured by quantitative CD31 staining and leukocyte adhesion in vivo by intravital microscopy. RESULTS Levels of VEGF-A and VEGFR-2 increased in samples from patients with IBD and colitic mice. VEGF-A induced angiogenesis of human intestinal microvascular endothelial cells in vitro as well as an inflammatory phenotype and adherence of neutrophils to intestinal endothelium. Overexpression of VEGF-A in mice with DSS-induced colitis worsened their condition, whereas overexpression of soluble VEGFR-1 had the opposite effect. Furthermore, overexpression of VEGF-A increased mucosal angiogenesis and stimulated leukocyte adhesion in vivo. CONCLUSIONS VEGF-A appears to be a novel mediator of IBD by promoting intestinal angiogenesis and inflammation. Agents that block VEGF-A signaling might reduce intestinal inflammation in patients with IBD.
Stroke | 2004
Andrea Flex; Eleonora Gaetani; Pierangelo Papaleo; Giuseppe Straface; Anna S. Proia; Giovanni Pecorini; Paolo Tondi; Paolo Pola; Roberto Pola
Background and Purpose— Proinflammatory genetic profiles, resulting from the combination of single nucleotide polymorphisms in genes encoding inflammatory molecules, may contribute to the development and progression of cardiovascular diseases. We evaluated the association between history of ischemic stroke and genetic profiles determined by the synergistic effects of polymorphisms in genes encoding prototypical inflammatory proteins. Methods— The study included 237 individuals with history of ischemic stroke and 223 age-matched and gender-matched controls. The polymorphisms of the C-reactive protein (CRP), interleukin-6 (IL-6), macrophage migration inhibitory factor (MIF), monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), E-selectin (E-sel), and matrix metalloproteinase-3 (MMP-3) genes were studied. Results— IL-6 GG, IL-6 GC, MCP-1 GG, ICAM-1 EE, E-sel AA, and MMP-3 5A5A genotypes were significantly and independently associated with stroke history. The odds of stroke increased with the number of high-risk genotypes: carrying 1 proinflammatory gene variant conferred a risk of 3.3 (1.6 to 6.9), whereas individuals concomitantly carrying 2 and 3 proinflammatory gene variants had adjusted odds ratios of 21.0 (7.6 to 57.5) and 50.3 (10.2 to 248.1), respectively. Conclusions— Proinflammatory genetic profiles are significantly more common in subjects with stroke history. Synergistic effects between proinflammatory genotypes might be potential markers for cerebrovascular diseases.
Diabetes | 2008
Eleonora Gaetani; Andrea Flex; Tamar Aprahamian; Teresa Hopkins; Giuseppe Straface; Giovanni Pecorini; Egidio Stigliano; Roy C. Smith; Flavia Angelini; John J. Castellot; Roberto Pola
OBJECTIVE—Peroxisome proliferator–activated receptors (PPARs) are therapeutic targets for fibrates and thiazolidinediones, which are commonly used to ameliorate hyperlipidemia and hyperglycemia in type 2 diabetes. In this study, we evaluated whether activation of PPARα and PPARγ stimulates neoangiogenesis. RESEARCH DESIGN AND METHODS—We used selective synthetic PPARα and PPARγ agonists and investigated their angiogenic potentials in vitro and in vivo. RESULTS—Activation of PPARα and PPARγ leads to endothelial tube formation in an endothelial/interstitial cell co-culture assay. This effect is associated with increased production of the angiogenic cytokine vascular endothelial growth factor (VEGF). Neovascularization also occurs in vivo, when PPARα and PPARγ agonists are used in the murine corneal angiogenic model. No vascular growth is detectable when PPARα and PPARγ agonists are respectively used in PPARα knockout mice and mice treated with a specific PPARγ inhibitor, demonstrating that this angiogenic response is PPAR mediated. PPARα- and PPARγ-induced angiogenesis is associated with local VEGF production and does not differ in extent and morphology from that induced by VEGF. In addition, PPARα- and PPARγ-induced in vitro and in vivo angiogenesis may be significantly decreased by inhibiting VEGF activity. Finally, in corneas treated with PPARα and PPARγ agonists, there is increased phosphorylation of endothelial nitric oxide synthase and Akt. CONCLUSIONS—These findings demonstrate that PPARα and PPARγ activation stimulates neoangiogenesis through a VEGF-dependent mechanism. Neoangiogenesis is a crucial pathological event in type 2 diabetes. The ability of PPARα and PPARγ agonists to induce neoangiogenesis might have important implications for the clinical and therapeutic management of type 2 diabetes.
Journal of Cellular and Molecular Medicine | 2009
Giuseppe Straface; Tamar Aprahamian; Andrea Flex; Eleonora Gaetani; Roy C. Smith; Giovanni Pecorini; Enrico Pola; Flavia Angelini; Egidio Stigliano; John J. Castellot; Douglas W. Losordo; Roberto Pola
Sonic hedgehog (Shh) is a morphogen‐regulating crucial epithelial‐mesenchymal interactions during embryonic development, but its signalling pathway is considered generally silent in post‐natal life. In this study, we demonstrate that Shh is de novo expressed after injury and during regeneration of the adult skeletal muscle. Shh expression is followed by significant up‐regulation of its receptor and target gene Ptc1 in injured and regenerating muscles. The reactivation of the Shh signalling pathway has an important regulatory role on injury‐induced angiogenesis, as inhibition of Shh function results in impaired up‐regulation of prototypical angiogenic agents, such as vascular endothelial growth factor (VEGF) and stromal‐derived factor (SDF)‐1alpha, decreased muscle blood flow and reduced capillary density after injury. In addition, Shh reactivation plays a regulatory role on myogenesis, as its inhibition impairs the activation of the myogenic regulatory factors Myf‐5 and MyoD, decreases the up‐regulation of insulin‐like growth factor (IGF)‐1 and reduces the number of myogenic satellite cells at injured site. Finally, Shh inhibition results in muscle fibrosis, increased inflammatory reaction and compromised motor functional recovery after injury. These data demonstrate that the Shh pathway is functionally important for adult skeletal muscle regeneration and displays pleiotropic angiogenic and myogenic potentials in post‐natal life. These findings might constitute the foundation for new therapeutic approaches for muscular diseases in humans.
Diabetes | 2010
Giuseppe Straface; Raimondo De Cristofaro; Stefano Lancellotti; Paola Rizzo; Vincenzo Arena; Egidio Stigliano; Giovanni Pecorini; Kensuke Egashira; Giulia De Angelis; Giovanni Ghirlanda; Andrea Flex
OBJECTIVE High-mobility group box-1 (HMGB1) protein is a nuclear DNA-binding protein released from necrotic cells, inducing inflammatory responses and promoting tissue repair and angiogenesis. Diabetic human and mouse tissues contain lower levels of HMGB1 than their normoglycemic counterparts. Deficient angiogenesis after ischemia contributes to worse outcomes of peripheral arterial disease in patients with diabetes. To test the hypothesis that HMGB1 enhances ischemia-induced angiogenesis in diabetes, we administered HMGB1 protein in a mouse hind limb ischemia model using diabetic mice. RESEARCH DESIGN AND METHODS After the induction of diabetes by streptozotocin, we studied ischemia-induced neovascularization in the ischemic hind limb of normoglycemic, diabetic, and HMGB1-treated diabetic mice. RESULTS We found that the perfusion recovery was significantly attenuated in diabetic mice compared with normoglycemic control mice. Interestingly, HMGB1 protein expression was lower in the ischemic tissue of diabetic mice than in normoglycemic mice. Furthermore, we observed that HMGB1 administration restored the blood flow recovery and capillary density in the ischemic muscle of diabetic mice, that this process was associated with the increased expression of vascular endothelial growth factor (VEGF), and that HMGB1-induced angiogenesis was significantly reduced by inhibiting VEGF activity. CONCLUSIONS The results of this study show that endogenous HMGB1 is crucial for ischemia-induced angiogenesis in diabetic mice and that HMGB1 protein administration enhances collateral blood flow in the ischemic hind limbs of diabetic mice through a VEGF-dependent mechanism.
Gut | 2007
Silvio Danese; Franco Scaldaferri; Stefania Vetrano; Tommaso Stefanelli; C. Graziani; Alessandro Repici; Riccardo Ricci; Giuseppe Straface; Alessandro Sgambato; Alberto Malesci; Claudio Fiocchi; Sergio Rutella
Background and aims: Angiogenesis is a novel component in inflammatory bowel disease (IBD) pathogenesis. We have previously shown that immune–nonimmune interactions through the CD40–CD40-ligand (CD40L) pathway might sustain gut inflammation, although their effect on regulating inflammation-driven angiogenesis is unknown. The present study evaluated the role of the CD40–CD40L interaction in the promotion of immune-mediated angiogenesis in IBD. Methods: Human nonimmune cells of colonic origin—namely, human intestinal fibroblasts (HIFs) and human intestinal microvascular endothelial cells (HIMECs)—were activated with either soluble CD40L (sCD40L), or CD40+ D1.1 cells or CD40L-activated lamina propria T (LPT) cells before measuring pro-angiogenic cytokine release. Blocking antibodies to either CD40 or CD40L were used to disrupt the CD40–CD40L interaction. The dextran sodium sulphate (DSS) model of experimental colitis in CD40 and CD40L knockout mice was established to assess whether the CD40–CD40L pathway was implicated in controlling inflammation-driven angiogenesis in vivo. Results: Engagement of CD40 on HIFs promoted the release of vascular endothelial growth factor (VEGF), interleukin-8 (IL-8) and hepatocyte growth factor (HGF). LPT cells were potent inducers of pro-angiogenic cytokine secretion by HIFs. Supernatants from sCD40L-activated HIFs induced migration of HIMECs and tubule formation, both of which were inhibited by blocking antibodies to either VEGF, IL-8 or HGF. Both CD40- and CD40L-deficient mice were protected from DSS-induced colitis and displayed a significant impairment of gut inflammation-driven angiogenesis, as assessed by microvascular density. Conclusions: The CD40–CD40L pathway appears to be crucially involved in regulating inflammation-driven angiogenesis, suggesting that strategies aimed at blocking CD40–CD40L interactions might be beneficial in acute and chronic intestinal injury.
Nutrition Metabolism and Cardiovascular Diseases | 2009
Giuseppe Straface; Dario Pitocco; Francesco Zaccardi; Giovanni Ghirlanda; Andrea Flex
The peroxisome proliferator-activated receptors (PPARs) are a group of three nuclear receptor isoforms, PPARalpha, PPARgamma and PPARdelta, encoded by different genes, and they form a subfamily of the nuclear receptor superfamily. The clinical interest in PPARs originates with fibrates and thiazolidinediones, which, respectively, act on PPARalpha and PPARgamma and are used to ameliorate hyperlipidaemia and hyperglycaemia in subjects with type 2 diabetes mellitus (T2DM). PPARs play a central role in these patients due to their ability to regulate the expression of numerous genes involved in glycaemic control, lipid metabolism, vascular tone and inflammation. Abnormal angiogenesis is implicated in several of the long-term complications of diabetes mellitus, characterized by vasculopathy associated with aberrant growth of new blood vessels. This pathological process plays a crucial role in diabetic retinopathy, nephropathy and neuropathy, impaired wound healing and impaired coronary collateral vessel development. In recent years, there has been increasing appreciation of the fact that PPARs might be involved in the molecular mechanisms that regulate angiogenesis through the action of growth factors and cytokines that stimulate migration, proliferation and survival of endothelial cells. During the last few years direct comparative analyses have been performed, using selective PPARs agonists, to clarify the angiogenic properties of the different members of the PPAR family. Lately, the findings provide new information to order to understand the biological, clinical and therapeutic effects of PPARs, and the role of these nuclear receptors in angiogenesis, with potentially important implications for the management of subjects affected by T2DM.
Gene Therapy | 2008
Wanda Lattanzi; Claudio Parrilla; Annarita Rita Fetoni; Giandomenico Logroscino; Giuseppe Straface; Giovanni Pecorini; Egidio Stigliano; Anna Tampieri; Rossella Bedini; Raffaella Pecci; Fabrizio Michetti; Andrea Gambotto; Paul D. Robbins; Enrico Pola
Local gene transfer of the human Lim mineralization protein (LMP), a novel intracellular positive regulator of the osteoblast differentiation program, can induce efficient bone formation in rodents. To develop a clinically relevant gene therapy approach to facilitate bone healing, we have used primary dermal fibroblasts transduced ex vivo with Ad.LMP-3 and seeded on a hydroxyapatite/collagen matrix prior to autologous implantation. Here, we demonstrate that genetically modified autologous dermal fibroblasts expressing Ad.LMP-3 are able to induce ectopic bone formation following implantation of the matrix into mouse triceps and paravertebral muscles. Moreover, implantation of the Ad.LMP-3-modified dermal fibroblasts into a rat mandibular bone critical size defect model results in efficient healing, as determined by X-rays, histology and three-dimensional microcomputed tomography (3DμCT). These results demonstrate the effectiveness of the non-secreted intracellular osteogenic factor LMP-3 in inducing bone formation in vivo. Moreover, the utilization of autologous dermal fibroblasts implanted on a biomaterial represents a promising approach for possible future clinical applications aimed at inducing new bone formation.
Journal of Internal Medicine | 2007
Andrea Flex; Eleonora Gaetani; Flavia Angelini; Alexandra Sabusco; Carmen Chillà; Giuseppe Straface; Paolo Pola; John J. Castellot; Roberto Pola
Objectives. Single nucleotide polymorphisms in genes encoding inflammatory molecules may determine genetic profiles associated with increased risk of development and progression of cardiovascular diseases. In this study, we evaluated distribution and reciprocal interaction of a set of functionally important polymorphisms of genes encoding prototypical inflammatory molecules in subjects with peripheral arterial occlusive disease (PAOD) and critical limb ischemia (CLI). We also investigated whether synergistic interactions between these pro‐inflammatory gene polymorphisms influence the risk of PAOD and CLI.
Experimental Gerontology | 2004
Roberto Pola; Andrea Flex; Eleonora Gaetani; Anna S. Proia; Pierangelo Papaleo; Angela Di Giorgio; Giuseppe Straface; Giovanni Pecorini; Michele Serricchio; Paolo Pola
Monocyte chemoattractant protein-1 (MCP-1) is a key molecule for monocyte chemotaxis and tissue extravasation and for the modulation of leukocyte function during inflammation. Upregulation of MCP-1 may occur in the brain of subjects affected by Alzheimers disease (AD) and MCP-1 levels in plasma and cerebrospinal fluid have been proposed as biological markers for the inflammatory process that accompanies AD pathogenesis. Importantly, serum levels and biological activity of MCP-1 protein are strongly influenced by a single nucleotide polymorphism occurring at position -2518 of the MCP-1 gene promoter. A recent study has investigated the possible association between this gene polymorphism and AD in a Spanish population, with negative results. Here, we performed a case-control study to test whether the risk for AD might be influenced by the -2518 A/G polymorphism of the MCP-1 gene in an ethnically homogeneous Italian population. The GG genotype and the G allele of the MCP-1 gene polymorphism were significantly more common in the AD group than in control individuals (P<0.0001) A logistic regression analysis indicated that the GG genotype was an independent risk factor for AD in our population. This effect was not influenced by the presence of the APOE 4 high-risk allele, nor by the presence of other gene variations associated with a pro-inflammatory phenotype. These findings indicate that the -2518 A/G polymorphism of the MCP-1 gene is associated with AD in Italians and confirm that inflammatory gene variations may be important contributors in the development and progression of neurodegenerative disorders.