Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Tataranni is active.

Publication


Featured researches published by Giuseppe Tataranni.


Physiologia Plantarum | 2013

Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi-pollution context

Adriano Sofo; Antonella Vitti; Maria Nuzzaci; Giuseppe Tataranni; Antonio Scopa; Jaco Vangronsveld; Tony Remans; Giuseppina Falasca; Maria Maddalena Altamura; Francesca Degola; Luigi Sanità di Toppi

To date, almost no information is available in roots and shoots of the model plant Arabidopsis thaliana about the hierarchic relationship between metal accumulation, phytohormone levels, and glutathione/phytochelatin content, and how this relation affects root development. For this purpose, specific concentrations of cadmium, copper and zinc, alone or in triple combination, were supplied for 12 days to in vitro growing seedlings. The accumulation of these metals was measured in roots and shoots, and a significant competition in metal uptake was observed. Microscopic analyses revealed that root morphology was affected by metal exposure, and that the levels of trans-zeatin riboside, dihydrozeatin riboside, indole-3-acetic acid and the auxin/cytokinin ratio varied accordingly. By contrast, under metal treatments, minor modifications in gibberellic acid and abscisic acid levels occurred. Real-time polymerase chain reaction analysis of some genes involved in auxin and cytokinin synthesis (e.g. AtNIT in roots and AtIPT in shoots) showed on average a metal up-regulated transcription. The production of thiol-peptides was induced by all the metals, alone or in combination, and the expression of the genes involved in thiol-peptide synthesis (AtGSH1, AtGSH2, AtPCS1 and AtPCS2) was not stimulated by the metals, suggesting a full post-transcriptional control. Results show that the Cd/Cu/Zn-induced changes in root morphology are caused by a hormonal unbalance, mainly governed by the auxin/cytokinin ratio.


International Journal of Molecular Sciences | 2013

Auxin and Cytokinin Metabolism and Root Morphological Modifications in Arabidopsis thaliana Seedlings Infected with Cucumber mosaic virus (CMV) or Exposed to Cadmium

Antonella Vitti; Maria Nuzzaci; Antonio Scopa; Giuseppe Tataranni; Tony Remans; Jaco Vangronsveld; Adriano Sofo

Arabidopsis thaliana L. is a model plant but little information is available about morphological root changes as part of a phytohormonal common response against both biotic and abiotic stressors. For this purpose, two-week-old Arabidopsis seedlings were treated with 10 μM CdSO4 or infected with CMV. After 12 days the entire aerial parts and the root system were analyzed, and the presence of CMV or the accumulation of Cd were detected. Microscopic analysis revealed that both CMV and Cd influenced root morphology by a marked development in the length of root hairs and an intense root branching if compared to controls. Among the three treatments, Cd-treated seedlings showed a shorter root axis length and doubled their lateral root diameter, while the lateral roots of CMV-infected seedlings were the longest. The root growth patterns were accompanied by significant changes in the levels of indole-3-acetic acid, trans-zeatin riboside, dihydrozeatin riboside, as a probable consequence of the regulation of some genes involved in their biosynthesis/degradation. The opposite role on root development played by the phythormones studied is discussed in detail. The results obtained could provide insights into novel strategies for plant defense against pathogens and plant protection against pollutants.


Journal of Plant Physiology | 2012

Berry morphology and composition in irrigated and non-irrigated grapevine (Vitis vinifera L.).

Adriano Sofo; Vitale Nuzzo; Giuseppe Tataranni; Michele Manfra; Mauro De Nisco; Antonio Scopa

The present study was carried out in a 5-year-old vineyard (Vitis vinifera L., cv. Aglianico) located in Southern Italy. Half of the plants (IRR) were fully irrigated, whereas the other half were not irrigated (NIRR). In both of the treatments, plant water status, gas exchange, photosynthetic efficiency and productive performance were determined. The arid conditions resulted in significant decreases in stem water potential in NIRR (minimum values of -1.34 and -1.52 MPa in IRR and NIRR, respectively). The values of yield per plant, cluster weight and total berry weight were significantly higher in IRR. Grape berries were separated into four weight classes, and morphometric and microscopic analyses were carried out to measure and calculate berry skin characteristics. Irrigation determined a marked shift toward heavier (+23% in the class ≥ 1.25 g) and bigger (336.35 mm³ vs 299.15 mm³) berries, and induced significant changes in other morphometric berry parameters. No differences among berry weight classes and irrigation treatments were observed for berry skin thickness. In all of the berry weight classes, total anthocyanins extracted from berry skins were significantly higher in NIRR than in IRR (12301.53 and 9585.52 mg kg⁻¹ fresh berry skin, respectively), and appeared to be positively related to berry weight, whereas total flavonols were not significantly different between the two treatments. Qualitative changes in the levels of single anthocyanin and flavonol compounds were detected between IRR and NIRR. In addition, iron, copper and zinc, whose high concentration can negatively affect wine quality, were significantly higher in the IRR treatment. The results highlighted that the absence of irrigation did not determine decreases in grape quality. Such data can be of primary importance in environments where water availability is by far the most important limiting factor for plant growth.


Journal of Horticultural Science & Biotechnology | 2010

Effects of Trichoderma harzianum strain T-22 on the growth of two Prunus rootstocks during the rooting phase.

Adriano Sofo; Luigi Milella; Giuseppe Tataranni

Summary Trichoderma harzianum strain T-22 (T22) is one of the most effective strains of this fungus that is able to colonise the roots of most plant species across a wide range of soil types. This fungus is used as a biocontrol agent during crop production, and for the improvement of the rooting and acclimatisation phases in plant nurseries. In vitro-cultured shoots of GiSeLa6® (Prunus cerasus P. canescens) and of GF677 (P. amygdalus P. persica), two important Prunus varieties used as commercial rootstocks, were inoculated with T22. The results showed that early inoculation of the fungus (at the stage of shoot transfer to root-inducing medium) seriously damaged both GiSeLa6® and GF677 plants; whereas, following later inoculation (7 d after shoot transfer to root-inducing medium), the plants survived and showed significant increases in shoot growth and root development. In particular, root lengths in GiSeLa6® and GF677 plants increased by 180% and 136%, respectively, compared to non-inoculated controls. Microscopic analysis revealed T22 hyphae spreading on the root surface in GiSeLa6® (fungus colonisation frequency = 20%), but not in GF677 roots. Our results demonstrate that the application of T22 during the rooting phase resulted in greater shoot lengths, as well as increased numbers of leaves, roots, and stem diameters. These morphological characteristics could increase the quality and viability of nursery planting material and provide advantages during the plant acclimatisation phase.


Tree Physiology | 2015

Correlations between morpho-anatomical changes and radial hydraulic conductivity in roots of olive trees under water deficit and rewatering

Giuseppe Tataranni; Michele Santarcangelo; Adriano Sofo; Cristos Xiloyannis; Stephen D. Tyerman; Bartolomeo Dichio

The effects of prolonged drought were studied on olive (Olea europaea L.; drought-sensitive cultivar Biancolilla and drought-tolerant cultivar Coratina) to examine how morpho-anatomical modifications in roots impact on root radial hydraulic conductivity (Lpr). Two-year-old self-rooted plants were subjected to a gradual water depletion. The levels of drought stress were defined by pre-dawn leaf water potentials (Ψw) of -1.5, -3.5 and -6.5 MPa. After reaching the maximum level of drought, plants were rewatered for 23 days. Progressive drought stress, for both cultivars, caused a strong reduction in Lpr (from 1.2 to 1.3 × 10(-5) m MPa(-1) s(-1) in unstressed plants to 0.2-0.6 × 10(-5) m MPa(-1) s(-1) in plants at Ψw = -6.5 MPa), particularly evident in the more suberized (brown) roots, accompanied with decreases in stomatal conductance (gs). No significant differences in Lpr and gs between the two olive cultivars were observed. Epifluorescence microscopy and image analyses revealed a parallel increase of wall suberization that doubled in white stressed roots and tripled in brown ones when compared with unstressed plants. In drought-stressed plants, the number of suberized cellular layers from the endodermis towards the cortex increased from 1-2 to 6-7. Recovery in Lpr during rewatering was correlated to the physical disruption of hydrophobic barriers, while the time necessary to obtain new mature roots likely accounted for the observed delay in the complete recovery of gs. Radial hydraulic conductivity in olive roots was strongly influenced by soil and plant water availability and it was also modulated by structural root modifications, size, growth and anatomy. These findings could be important for maintaining an optimal water status in cultivated olive trees by scheduling efficient irrigation methods, saving irrigation water and obtaining yield of high quality.


Archive | 2014

Control of Biotic and Abiotic Stresses in Cultivated Plants by the Use of Biostimulant Microorganisms

Adriano Sofo; Maria Nuzzaci; Antonella Vitti; Giuseppe Tataranni; Antonio Scopa

The need for new eco-friendly control methods against plant diseases and pests requires that the scientific research is focused on effective tools for a safe environment for humans and animal health. The systemic acquired resistance (SAR) represents a valid opportunity in plant natural protection. Particularly, biocontrol microorganisms (BCMs) can be used as inducers of SAR. At the same time, fungal BCMs are able to promote plant growth and development (so acting as plant growth-promoting microorganisms (PGPMs)) that in turn determine a higher tolerance against abiotic stresses, such as drought and salinity. The ability of BCMs and PGPMs of modulating plant defence mechanisms, like SAR, was demonstrated, but the details of this BCM-plant molecular crosstalk are poorly known and many defensive compounds are likely to exist but remain to be identified. For these reasons, BCMs and PGPMs can be defined as “biostimulant microorganisms”, able to foster plant growth and defence against pathogens throughout the crop life cycle, from seed germination to plant maturity. The aim of this chapter is to give an up-to-date overview on the recent breakthroughs in the use of biostimulant microorganisms on plants for improving crop vigour, yields and quality and for increasing plant tolerance against biotic and abiotic stresses.


Archive | 2012

Soil Fungi-Plant Interaction

Giuseppe Tataranni; Bartolomeo Dichio; Cristos Xiloyannis

One of the main European agricultural problems is the decline in soil fertility due to the reduction of the natural soil harmony. When natural soil composition is altered, few cultivated plants replace spontaneous populations of numerous species. Man becomes the only regulator of a new fragile equilibrium between the simplified biocenosis elements. Agronomic techniques (fertilisation, irrigation, soil tillage, etc.) become instruments to achieve such an improbable equilibrium. Frequently, these techniques are just the ones responsible for environmental pollution, disequilibrium among mineral elements and the general decrease in soil fertility. They are based on simplification of the relationships between the plant and other components of the natural habitat. This simplification should make agricultural systems easier to be controlled, but, indeed, it creates conditions of extreme weakness for plant life. It is clear that life on emerged lands has been possible thanks to complex relationships and, for plants in particular, to microorganism symbiosis. On the other hand, decreasing relationships between cultivated plants and other components of the natural habitat give rise to environmental degradation and pollution (due to the need of using high amounts of chemical inputs).


Archive | 2014

Growth Patterns of Tomato Plants Subjected to Two Non-conventional Abiotic Stresses: UV-C Irradiations and Electric Fields

Adriano Sofo; Donato Castronuovo; Stella Lovelli; Giuseppe Tataranni; Antonio Scopa

Ultraviolet-C radiation (UV-C = 100–280 nm) is strongly affected by ozone levels, so that the amount of this radiation reaching the Earth’s surface is extremely low. In the future, UV-C radiation is expected to increase as the result of stratospheric ozone depletion due to atmospheric pollution, with strong negative effects on economically important crops. High UV-C doses determine irreversible damages both at plant physiological and morphological levels, leading plants to death. Also electric fields (EFs) can determine changes at morphological and physiological levels in plants. Electro-culture can accelerate growth rates, increase yields, improve crop quality and plant protection against diseases, insects and frost.


Environmental and Experimental Botany | 2012

Direct effects of Trichoderma harzianum strain T-22 on micropropagated shoots of GiSeLa6® (Prunus cerasus × Prunus canescens) rootstock

Adriano Sofo; Giuseppe Tataranni; Cristos Xiloyannis; Bartolomeo Dichio; Antonio Scopa


International Journal of Plant Biology | 2014

Hormonal response and root architecture in Arabidopsis thaliana subjected to heavy metals

Antonella Vitti; Maria Nuzzaci; Antonio Scopa; Giuseppe Tataranni; Imma Tamburrino; Adriano Sofo

Collaboration


Dive into the Giuseppe Tataranni's collaboration.

Top Co-Authors

Avatar

Adriano Sofo

University of Basilicata

View shared research outputs
Top Co-Authors

Avatar

Antonio Scopa

University of Basilicata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Nuzzaci

University of Basilicata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge